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The Relativistic Heavy Ion Collider (RHIC) makes it possible to study high density

nuclear matter under extreme conditions. Hadronic resonance states have extremely

short lifetimes (few fm/c) which are comparable to the lifetime of the hot dense mat-

ter in ultra-relativistic heavy ion collisions. K∗(892), as a vector meson resonance, is

a unique tool to probe various properties of the hot dense matter. Measurements of

K∗(892) production in Au+Au and p+p collisions at
√

sNN = 200GeV are addressed

in this thesis.

The hadronic decay channels of K∗0(892) → Kπ and K∗±(892) → K0
Sπ± are studied

using the STAR detector at RHIC in Brookhaven National Laboratory. Collision

data were taken during the RHIC runs of 2001 and 2002. K∗0 and K∗± signals

are reconstructed using the event-mixing technique. K∗0 mass shift as a function

of transverse momentum is studied in both Au+Au and p+p collisions. The mid-

rapidity (|y| < 0.5) K∗0 and K∗± yields and inverse slope parameters are measured in

pp and Au+Au data with various collision centralities. K∗0 mean transverse momen-

tum distributions for different collision centralities are discussed. The K∗/K ratios

in Au+Au collisions are found to be significantly lower than the ratio in pp collisions.

K∗/K and φ/K∗ ratios are compared to different collision systems with various col-

lision energies. The nuclear modification factor (RAA) of K∗ at the intermediate pT

is similar to the K0
S RCP and different from the Λ RCP . Results on K∗0 elliptic flow

in Au+Au collisions are addressed. Physics implications of these measurements are

discussed in this thesis.
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Chapter 1

Physics

1.1 The Physics of Relativistic Heavy Ion Colli-

sions

1.1.1 Deconfinement in QCD and Phase Diagram

The strong interaction, the force which binds protons and neutrons together into

atomic nuclei, is generally understood to be described by the field theory of Quantum

Chromodynamics (QCD), a theory in which different types, of ‘flavors’ of massive

quarks interact via the exchange of massless gluons. This theory is superficially quite

similar to the description of the electromagnetic interaction by the incredibly success-

ful theory of Quantum Electrodynamics [3].

There are two remarkable features of QCD. At large distances or small momentum

transfer (Q2), the strong coupling constant (αs) is large and quarks are confined in

colorless particles. At short distances or large momentum transfer, the coupling con-

stant is small. This is the regime of asymptotic freedom. Lattice QCD calculations,

considering two light quark flavors, predict a phase transition from a confined phase,

hadronic matter, to a deconfined phase, or quark gluon plasma (QGP), to occur at a

temperature of approximately 150 MeV [1].

Figure 1.1 shows the phase diagram of the hadronic and partonic matter. A phase
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Figure 1.1: Phase diagram of hadronic and partonic matter. Figure is taken from [2].

transition from the confined hadronic matter to the deconfined QGP matter is ex-

pected to happen at either high temperature or large baryon chemical potential µB.

Experiments on relativistic heavy ion collisions are designed to search for and study

the deconfined QGP matter.

1.1.2 Relativistic Heavy Ion Collisions

The experimental programs in relativistic heavy ions using the BNL-AGS and CERN-

SPS started in 1986. At BNL, ion beams of silicon and gold, accelerated to momenta

of 14 and 11 GeV/c per nucleon, respectively, have been utilized in 10 fixed-target

experiments. There have been 15 heavy ion experiments at CERN utilizing beams of
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oxygen at 60 and 200 GeV/c per nucleon, sulphur at 200 GeV/c per nucleon and Pb

at 160 GeV/c per nucleon [1].

The Relativistic Heavy Ion Collider (RHIC) at BNL is designed for head on Au+Au

collisions at
√

sNN = 200 GeV. The first RHIC run was performed in 2000 with

Au+Au collisions at
√

sNN = 130 GeV/c in four experiments, STAR, PHENIX, PHO-

BOS and BRAHMS. The second RHIC run was in 2001 and 2002 with Au+Au and

p+p collisions at
√

sNN = 200 GeV.

The above mentioned relativistic heavy ion collision experiments are designed for the

search and study of the possible deconfined high energy density matter, the quark

gluon plasma. In head on relativistic heavy ion collisions, two nuclei can be repre-

sented as two thin disks approaching each other at high speed because of the Lorentz

contraction effect in the moving direction. The initial stage of these collisions can be

described as the interpenetration of the nuclei with partonic interactions at high en-

ergy. This stage features the creation of high pT jets, cc pairs or other products of high

momentum transfer scattering processes on the parton level. With the interactions of

the partons in the system, we expect that chemical and local thermal equilibrium of

the system will be reached and thus the QGP forms [4]. As the QGP system expands

and cools down, mesons and baryons emerge with their abundances expected to be

fixed by hadronization temperature and chemical fugacities. This stage of fireball

evolution is commonly known as chemical freeze-out. After initial hadronization, the

system may evolve as an interacting hadron gas. At a certain point (which can vary

according to particle species), kinetic freeze-out, where hadrons stop interacting, is

reached [5]. Because a comprehensive understanding of the collision process is cur-

rently impossible, we’ll now discuss a few important physics approaches on relativistic

heavy ion collisions in the following sections.

1.1.3 Statistical Model

Experiments on relativistic heavy ion collisions are designed to look for the production

of a quark-gluon plasma phase which subsequently hadronizes. One of the crucial

questions is whether thermal and chemical equilibrium is achieved at some stage of
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the collision. Applying a statistical model which assumes equilibrium, and testing

experimental data against model predictions is one way of testing reality against the

idea of a thermally and chemically equilibrated fireball at the point of hadro-chemical

freeze-out [6].

The present statistical model is based on the use of a grand canonical ensemble

to describe the partition function and hence the density of particle species i in an

equilibrated fireball:

ni =
gi

2π2

∫ ∞

0

p2dp

e(Ei(p)−µi)/T ± 1
(1.1)

with particle density ni, spin degeneracy gi, momentum p, total energy E and chem-

ical potential µi = µBBi− µSSi− µI3I
3
i . The quantities Bi, Si and I3

i are the baryon

number, the strangeness number and the third-component of the isospin quantum

number of the particle of species i. The temperature T and the baryochemical po-

tential µB are the two independent parameters of the model, while the volume of the

fireball V , the strangeness chemical potential µS, and the isospin chemical potential
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Figure 1.2: Comparison between RHIC experimental particle ratios and statistical
model calculations with T = 174 MeV and µB = 46 MeV. Figure is taken from [7].
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µI3 are fixed by the three conservation laws for

baryon number: V
∑

i

niBi = Z + N (1.2)

strangeness: V
∑

i

niSi = 0 (1.3)

charge: V
∑

i

niI
3
i =

Z −N

2
(1.4)

This statistical model has been applied to fit the recent RHIC experimental data

in Au+Au collisions at
√

sNN= 130 GeV. By using the various particle ratios ob-

tained from the STAR, PHENIX, PHOBOS and BRAHMS experiments at RHIC,

the best agreement of the model and the data is achieved with minimal χ2 at the

baryon chemical potential µB '46±5 MeV and the temprature T '174±7 MeV [6].

The comparison of the RHIC experimental particle ratios and the statistical model

calculations is shown in Figure 1.2.

1.1.4 Jet Quenching

In deconfined quark and gluon matter at high energy density, partons propagating

will lose energy through gluon bremsstrahlung, with the magnitude of the energy loss

predicted to depend strongly on the gluon density of the medium. Such a partonic

stage energy loss could soften the fragmentation of jets, leading to the suppression of

high transverse momentum (high pT ) hadrons in the final state. This effect is usually

called jet quenching. Thus a measurement of partonic energy loss and the suppression

of high pT hadrons therefore provides unique probe of the density of the medium [8].

In order to measure the high pT hadron suppression in relativistic heavy ion collisions,

the comparison of the hadron pT spectra relative to reference data from nucleon-

nucleon collisions at the same collision energy is needed. This comparison should

also consider the nuclear effect of the colliding nuclei. Thus the nuclear modification

factor is defined as

RAA(pT ) =
d2NAA/dpT dη

TAAd2σNN/dpT dη
(1.5)

where TAA = 〈Nbin〉/σNN
inel accounts for the collision geometry, averaged over the event
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centrality class. 〈Nbin〉, the equivalent number of binary NN collisions, is calcu-

lated using a Glauber model. RAA(pT ) is less than unity at low pT . In contrast,

the yield for hard processes scales as 〈Nbin〉 in the absence of nuclear medium effects

[RAA(pT ) = 1] [8].

Figure 1.3 shows RAA(pT ) for various centrality bins in Au+Au collisions at
√

sNN=130

GeV relative to an NN reference spectrum. RAA(pT ) increases monotonically for pT <

2 GeV/c at all centralities and saturates near unity for pT > 2 GeV/c in the most

peripheral bins. In contrast, RAA(pT ) for the central bins reaches a maximum and

then decreases strongly above pT = 2 GeV/c, showing the suppression of the charged

hadron yield relative the NN reference. RAA(pT ) varies continuously as a function of

centrality, and no centrality threshold for the onset of suppression is observed [8].

Since RAA(pT ) at pT > 2 GeV/c in peripheral Au+Au collisions is close to unity, the

high pT hadron suppression in central Au+Au collisions can also be investigated by

comparing the hadron spectra in central and peripheral Au+Au collisions. Thus RCP
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is defined as

RCP =
〈Nperipheral

bin 〉d2N central/dpT dη

〈N central
bin 〉d2Nperipheral/dpT dη

(1.6)

1.1.5 Strangeness Enhancement

A long standing prediction for a signature of QGP formation is the enhancement of

strange hadrons. The production of strange hadrons relative to nonstrange hadrons is

suppressed in hadronic reactions. This suppression increases with increasing strangeness

content of the hadron. In a QGP, the strange quark content is rapidly saturated by

ss pair production in gluon-gluon reactions, resulting in an enhancement in the pro-

duction of strange hadrons over what would be expected if no QGP was formed. In

particular, multi-strange baryons and strange antibaryons are predicted to be strongly

enhanced when a QGP is formed. Furthermore, it has been shown that an enhanced
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strangeness content cannot be destroyed nor generated by interactions during expan-

sion and freeze-out [1].

Strangeness production has been studied in heavy-ion collisions at the AGS, SPS and

RHIC. The ratio of kaon to pion production is often used to quantify the strangeness

production enhancement. Figure 1.4 shows the mid-rapidity K/π ratios versus col-

lision energy
√

sNN in A+A and p+p collisions at the AGS, SPS and RHIC. A

significantly rapid increase of K+/π+ ratios from relatively low AGS energy to SPS

energy is observed. The ratio then saturates and keeps constant from
√

sNN ∼ 10 to

130 GeV. The ratios in A+A collisions at these energies is large compared to p+p

collisions at similar energies indicating the strangeness production enhancement in

A+A collisions [9].

1.1.6 Elliptic Flow

In non-central Au+Au collisions, the event in the plane perpendicular to the beam

axis exhibits an azimuthally anisotropic shape, so the momentum space distribution

does bot need to be cylindrically symmetric. The azimuthal particle distributions in

momentum space can be expanded in a form of Fourier series

E
d3N

d3p
=

1

2π

d2N

pT dpT dy
(1 +

∞∑
n=1

2vn cos[n(φ−Ψr)]) (1.7)

where Ψr denotes the reaction plane angle. The Fourier expansion coefficient vn

stands for the nth harmonic of the event azimuthal anisotropies. Anisotropic flow

corresponding to the second harmonic (with coefficient v2) plays a very important

role in non-central Au+Au collisions and people use a special term “elliptic flow”

to denote this. The word “elliptic” is due to the fact that in polar coordinates an

azimuthal distribution with nonzero second harmonic represents an ellipse. The long

axis of the “ellipse” of the particle distribution in momentum space together with the

beam axis defines the event’s reaction plane [10].

Among the first experimental results from RHIC were measurements of v2 as a func-

tion of collision centrality for charged hadrons, and v2 as a function of pT for charged

hadrons, as well as identified charged pions, charged kaons, and protons (pT < 0.9
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GeV/c). Further results from RHIC have shown that in the low momentum region

(pT < 2 GeV/c) hydrodynamic model calculations provide a good description of v2

as a function pT for π, K, p, and Λ. Alternatively, in the region pT > 2.5 GeV/c,

the hard scattering of partons apparently become prominent and the hydrodynamic

model predictions fail. These results may be explained by assuming a high initial

gluon density and energy loss in an early partonic stage [11].

More importantly however, RHIC has shown that, combined with observations of

transverse radial flow, the measurement of elliptic flow for multiply strange baryons

may provide a key and definitive insight into a state of matter and possible partonic

collectivity in the early stage of the collision. Specifically, significant elliptic flow

observed e.g. for the Ξ and Ω, would be a clear indication of partonic collectivity in

the initial stages of the collision [11].
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1.1.7 Heavy Flavor

Charm quark production in relativistic heavy ion collisions is particularly sensitive

to the early gluon dominated stages of the collision. Most cc production is expected

to occur during the early partonic stages, much of it via hard gluon fusion, gg → cc

production during the initial stage. Because the yield of charm is sensitive to the

details of the early stages, the measurement of the charm production rate is very

important for determining a proper description the initial conditions and the early

stages of relativistic nucleus-nucleus collisions [11].

Studying the energy loss of partons in QCD matter is an exciting new possibility

afforded for the first time by the high energy of the RHIC machine. For a heavy

quark, the amount of energy loss in the medium is expected to be lower than for

a light quark due to suppression of gluon radiation at small angles (the “dead cone

effect” [13]). This is expected to result in charm enhancement at moderate pT . One

calculation [13] shows a factor of 2 enhancement of D/π ratio at pT ∼ 5 GeV/c in

hot QGP matter compared to the yield expected in pp collisions.

The production of J/ψ particles in a quark-gluon plasma is predicted to be suppressed.

This is a result of the Debye screening of a cc pair, initially formed in the QGP by

fusion of two incident gluons. Less tightly bound excited states of the cc system,

such as ψ′ and χc, are more easily dissociated and will be suppressed even more than

the J/ψ. Thus a measurement of charmonium production in relativistic heavy-ion

collisions and its yield suppression relative to the yield produced in cold hadronic

matter could be a unique signal to study properties of a deconfined QGP matter [1].

Another important element of the study of charmonium suppression in QGP matter

is to study the production of open charm, such as D0, D±, D∗, etc. Since the open

charm can be produced under the same initial gluon conditions, the measurement of

open charm production can provide a good reference for the study of charmonium

suppression in relativistic heavy ion collisions.
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1.2 Resonance Production and Probing Freeze-Out

Evolution

If a particle can decay by strong interaction, it does so very quickly. Strongly decaying

particles have lifetimes (τ) about 10−23 s (about the time it takes a light signal to

cross a proton) and such particles are called resonances [14].

Resonances’ decay lengths are extremely short, in the scale of a few fm. Their widths

(Γ) and lifetimes obey the uncertainty principle Γ × τ = h̄c. A typical resonance is

the K∗ vector meson which has a lifetime of 4 fm/c and width of 50.7 MeV/c2 [15].

Some resonances are excited states of corresponding stable particles. For example,

the K∗ vector meson resonance is the excited state of the Kaon pseudo-scalar meson.

1.2.1 A Little Bit of History on Resonances

In 1952, Anderson, Fermi and their collaborators at Chicago started their classic

experiments on the pion-nucleon interaction at low energy. They used the external

pion beams from the Chicago synchrocyclotron as a source of particles, and discov-

ered what was for a long time called the pion-nucleon resonance. This newly found

resonance was in the 3/2 isospin state and had an angular momentum of 3/2. The

discovery of the pion-nucleon resonance was of paramount importance to the high

energy physics community at that time and encouraged the study and discovery of

hundreds of resonances in the following years [16].

With the establishment of the hydrogen bubble chamber in 1950s, entirely new pos-

sibilities for research into high energy physics presented themselves. Results quickly

became apparent in the form of newly discovered elementary particles [16].

In 1960, Luis W. Alvarez, et al, announced the discovery of the first resonance Y ∗
I

(which is known as Σ∗(1385) now) at the Rochester High Energy Physics Conference.

Their K−+p → Λ+π+ +π− experiments provided proof that the π± recoiled against

a combination of Λ + π∓ that had a unique mass, broadened by the effects of the

uncertainty principle. The mass of the Λπ combination was calculable as 1385 MeV
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and the isospin of the system was 1. Although the famous Fermi pion-nucleon res-

onance had been known for years, the impact of the Σ∗(1385) resonance was quite

different since it really acted like a new particle and was not simply a resonance in a

cross section [16].

Before the end of 1960, the same group that had found the Σ∗(1385) found two

other strange resonances, the K∗(890) and the Λ(1405). During the discovery of the

K∗(890), a bump shape in the invariant mass spectrum was for the first time used

to establish the existence of a particle. Soon after that, the ρ, ω and η vector meson

resonances were discovered. In 1962, the Ξ∗(1530) resonance was discovered and re-

ported. By the year 1967, around 1411 resonances had been discovered [16].

In recent years, experiments using relativistic heavy ion collisions have provided op-

portunities for the use of resonances to study various properties of the hot and dense

nuclear matter under extreme conditions. In the STAR experiment at RHIC, the

following resonances have been measured: ρ0(770) [17], K∗(892) [18], f0(980) [19],

φ(1020) [20], ∆(1232) [21], Σ∗(1385) [22], Λ(1520) [23] and Ξ∗(1530) [24]. Table 1.1

lists the resonances measured in the STAR experiment with their measured decay

channels and branching ratios, widths and lifetimes.

Resonance Decay Channel Branching Ratio Width (MeV/c2) Lifetime (fm/c)
ρ0(770) π+π− ∼100% 150 1.3
K∗(892) Kπ ∼100% 50.7 4
f0(980) π+π− dominant 40 to 100 2 to 5
φ(1020) K+K− 49.2% 4.46 44
∆(1232) pπ >99% ∼120 ∼1.6
Σ∗(1385) Λπ 88.2% 35.8 5.5
Λ(1520) pK 22.5% 15.6 13
Ξ∗(1530) Ξπ ∼100% 9.1 22

Table 1.1: The resonances measured in the STAR experiment with their measured
decay channels and branching ratios, widths and lifetimes.
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1.2.2 Resonance In-Medium Effects

One of the most exciting new directions in nuclear physics is to study how nuclear

phenomena change as the environment changes. Thus relativistic heavy ion experi-

ments are designed to probe the state of nuclear matter at extremely high temperature

and high density. They make it possible for us to probe the properties of individual

hadrons in close encounters with other strongly interacting hadrons in the hot-dense

matter. These processes should reflect the change of the strong interaction vacuum

as density and temperature are turned on [25]. Here we use the term “the hadrons’

in-medium effects” to denote the high density and/or high temperature medium re-

lated modification of the individual hadrons properties.

In contrast, the relatively stable particles, such as Λ, D0, etc., with their lifetimes

much greater than the lifetime of the fireball would decay after the kinetic freeze-out

when all the hadrons stop interacting so that all the accumulated hot-dense medium

related effects will be blurred. We thus cannot expect to observe any in-medium

effects by measuring these stable particles. Fortunately, resonances with extremely

short lifetimes can decay inside the medium before all the accumulated in-medium

effects might be erased. Thus by measuring resonance production, one can access

information about how the resonances encounter the hot-dense medium.

One important approach on the studies of the hadrons’ in-medium effects was theo-

retically addressed by G. E. Brown and M. Rho in 1991 [25] which was well known

as the Brown-Rho scaling. They started with a known structure of an effective La-

grangian at low energy and zero density (i.e., free space), dictated by symmetries and

other constraints of QCD (e.g., chiral symmetry). Then they studied how this the-

ory evolves as density (or temperature) is increased by embedding a hadron in dense

matter which is equivalent to changing the vacuum and thereby modifying quark and

gluon condensates. Thus they had, as density increases, the same Lagrangian but with

the masses and coupling constants of the theory modified according to the symme-

try constraints of QCD. Finally, they established the famous approximate in-medium

scaling law:

m∗
σ/mσ ≈ m∗

N/mN ≈ m∗
ρ/mρ ≈ m∗

ω/mω (1.8)
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where the masses without asterisks stand for free-space values and the masses with

asterisks stand for the values in the dense medium.

R. Rapp also has made recent theoretical studies [26] on the thermal π+π− emis-

sion spectra from the late stages of heavy ion reactions at ultra-relativistic energies

considering the hadronic in-medium effects. He started with the ρ-propagator Dρ at

finite temperatures and baryon densities:

Dρ =
1

M2 − (m
(0)
ρ )2 − Σρππ − ΣρM − ΣρB

(1.9)

The in-medium self-energy terms consist of three parts: (1) Σρππ represents the free

decay width into 2-pion states; (2) ΣρM describes resonant ρ-interactions with sur-

rounding π, K and ρ mesons; (3) ΣρB accounts for the resonant ρ-interactions with

surrounding nucleons, hyperons and baryon resonances. Finally, he reached the in-

medium ρ spectral function

dRρ→ππ

dM
= − 6

π

g2
ρ

6π

k3

M
Fρππ(k)2 × ImDρ(M ; µB, T )(

MT

2π
)3/2e−(M−µρ)/T (1.10)

Thus the spectral function for the ρ resonance in a medium with finite density and

finite temperature would have a smaller mass peak and wider width than the spectral

function for the ρ in a free space. This study implies the resonance in-medium effects

would modify the resonance mass, width and even the line shape.

E. V. Shuryak and G. E. Brown have also recently studied resonance in-medium

effects [27]. Besides the resonance-pion s-channel interactions which might modify

the resonance properties according to the Brown-Rho scaling, the resonance-pion t-

channel interactions can also modify the resonance properties. In the case of the

ρ resonance, it can scatter with a pion in the medium to temporarily form an a1

resonance. After the a1 resonance decays back to a ρ and a pion, the ρ properties

might have been modified by this t-channel interactions. They predicted that in the

hot-dense medium, a downward mass shift for the ρ and K∗ resonance and a upward

mass shift for the ∆ resonance can be expected.

Thus a systematic measurement of various types of resonances, such as ρ(770), K∗(892),

∆(1232), etc., and their properties in the hot-dense matter, such as masses, widths
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and line shapes in relativistic heavy ion collisions is needed to study the hadrons’

in-medium effects.

1.2.3 Re-scattering Effect and Re-generation Effect

Resonances have extremely short lifetimes (a few fm/c), which are comparable to

the lifetime of the hot-dense matter formed in relativistic heavy ion collisions. The

resonances can be thermally produced at the chemical freeze-out stage. Their short

lifetimes make it possible for the resonances’ decayed daughters to undergo a period

of re-interaction in the hadron gas phase [28, 29, 30, 31].

A portion of the resonances may decay before the kinetic freeze-out stage and their

hadronic decay daughter particles might be re-scattered by other particles in the

hadron gas. This is called the resonance daughter particles’ re-scattering effect. This

effect may destroy a part of the resonance signals. At the same time, the hadronic

particles in the medium can interact with each other to produce a part of the reso-

nance signals. This is called the re-generation effect, and can compensate in part for

the resonance yield lost due to the re-scattering effect.

The portion of the resonance signals destroyed by its daughter particles’ re-scattering

effect depends on the resonance lifetime, its daughter particle’s interaction cross sec-

tions with the hadrons in the medium, the time scale between the chemical and kinetic

freeze-outs and the density of the medium. The amount of the resonance signals which

can be produced by the re-generation effect depends on the interaction cross sections

for hadrons to produce the resonance, the time scale allowed for this re-generation

effect and the medium density.

Due the resonance daughter particles’ re-scattering effect and the re-generation ef-

fect, resonances are good candidates to probe various properties of the hot-dense

matter in relativistic heavy ion collisions, in particular the fireball evolution prop-

erties between chemical and kinetic freeze-outs, and the time scale between the two

freeze-outs [28, 32, 33, 34, 35].
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1.2.4 Measuring the Time Scale between Chemical and Ki-

netic Freeze-outs

An important aspect in the study of heavy ion collisions is to determine the time scale

governing hadron production and the duration of the decoupling (freeze-out) process.

At present there is no general consensus on the freeze-out time scale, and hence on

how much observed particles ”remember” about their primordial source. The Quark

Gluon Plasma (QGP) signals should be visible in hadronic particles if freeze-out is

explosive (zero time between chemical and kinetic freeze-outs). However, in principle

the newly-formed hadrons could undergo a period of re-interaction in a hadronic gas

phase. This re-interaction phase between chemical and kinetic freeze-outs, the time

scale of which could be hadron-specific, could significantly alter any considered QGP

signals. Thus an estimation of the time scale between chemical and kinetic freeze-

outs is of great interest. The measurements of short-lived resonance production in

relativistic heavy ion collisions provide an unique tool to estimate the time scale

between the chemical and kinetic freeze-outs due to the resonance decay daughters’

re-scattering effect in the hadronic gas medium [28, 36].

In principle, the resonance decay daughters’ re-scattering effect destroys a portion of

the resonance signals and the re-generation effect in the hadron medium produces a

part of the resonance signals. Both the re-scattering effect and the re-generation effect

may happen in the hadron gas medium between the chemical and kinetic freeze-outs.

Technically, in order to estimate the time scale, the resonance particle we choose

should fulfill one of the following two conditions: (1) resonance signals destroyed by

the re-scattering effect are much more than the signals produced by the re-generation

effect; (2) the signals produced by the re-generation effect are much more than the

signals destroyed by the re-scattering effect. If there is no significant difference be-

tween the amounts of resonance signals destroyed and produced, we cannot estimate

the time scale.

Thus the K∗(892) resonance is a good candidate to estimate the time scale because

it fulfills condition (1). The K∗ lifetime is extremely small so that a large portion of
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the K∗ signals may decay inside the hadron medium. Its pion decay daughter’s inter-

action cross section with the pions in the hadron medium is relatively large. Thus we

expect to have a large amount of the K∗ signals destroyed by its daughter particles’

re-scattering effect. On the other hand, the interaction cross section for the kaon and

pion particles in the hadron medium to re-generate the K∗ signals is relatively small

and the number of kaons in the hadron medium is much smaller than the number of

pions [37]. Thus we do not expect to have a strong re-generation effect to produce

the K∗ signals in the hadron medium.

Another good candidate is the ρ0 resonance via its di-leptonic decay channel ρ0 →
e+e− which agrees with condition (2). Details will be discussed in Section 1.2.6.

1.2.5 UrQMD Transport Model

The Ultra-relativistic Quantum Molecular Dynamics model (UrQMD [28]) is a micro-

scopic transport approach based on the covariant propagation of constituent quarks

and di-quarks accompanied by mesonic and baryonic degrees of freedom. It simulates
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Figure 1.6: Inelastic and (pseudo-)elastic collision rates in Pb+Pb at 160A GeV. τch

and τth denote the chemical and thermal/kinetic freeze-out as given by the microscopic
reaction dynamics of UrQMD. Figure is taken from [28].
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multiple interactions of ingoing and newly produced particles, the excitation and frag-

mentation of color strings and the formation and decay of hadronic resonances [28].

In the UrQMD model, two different kinds of freeze-outs, the chemical freeze-out

and the thermal/kinetic freeze-out, happen sequentially at different temperatures

(Tch ≈ 160 - 170 MeV, Tth ≈ 120 MeV) and thus at different times. Before the

chemical freeze-out stage, the flavor and chemistry changing inelastic processes (e.g.

ππ → KK) are dominant. Between the chemical freeze-out and the kinetic freeze-

out, the elastic collisions, which consist of two components: the true elastic processes

(e.g. ππ → ππ) and the pseudo-elastic processes (e.g. Kπ → K∗ → Kπ), exceed the

inelastic processes [28] .
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Figure 1.7: Rapidity densities for ∆(1232), Λ∗(1520), K∗0(892) and φ in Pb+Pb at
160A GeV collisions. Left: All resonances as they decay. Right: Reconstructable
resonances. Figure is taken from [28].

Figure 1.6 shows the time evolution of the elastic and inelastic collision rates in

Pb+Pb at 160 A GeV from the UrQMD model calculation. However, since there

is a separation between the different freeze-outs, a part of the resonance daughters

re-scatter, and therefore are unobservable in the final state. The pseudo-inelastic pro-

cesses which happen between the potential resonance daughters can produce a part
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of the resonance signals. Using the UrQMD model calculation and considering the

above two kinds of processes, Figure 1.7 shows the rapidity densities for the ∆(1232),

Λ∗(1520), K∗0(892) and φ in Pb+Pb at 160A GeV collisions. From this figure, we can

see that the resonance daughter particles’ re-scattering effect in the hadron medium

drastically lowered the observable yields of resonances as compared to the primordial

yields at chemical freeze-out. However, this daughter particles’ re-scattering effect

lowering of the resonance yields has pT dependence. Resonances with higher pT have

a larger chance to escape the hadron medium and thus avoid the re-scattering effect

than the resonances with lower pT . Figure 1.8 directly addresses the pT dependence

of the observability of resonances. The UrQMD model study supports a strong pT

dependence of the re-scattering probabilities. This effect should lead to a larger

apparent temperature (inverse slope parameter) for resonances reconstructed from

strongly interacting particles [28].
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as a function of transverse momentum for ∆(1232), Λ∗(1520), K∗0(892) and φ in
Pb+Pb at 160A GeV collisions. Figure is taken from [28].
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1.2.6 Resonance Di-Lepton Decay Channel

Besides the hadronic decay channel, some quarkonium resonance mesons which have

quark content qq can decay in the di-leptonic channel, such as ρ → e+e−, φ → µ+µ−.

In the hadron medium phase between chemical and kinetic freeze-out, hadronic de-

cay daughters might be re-scattered by the particles in the hadron medium and thus

a portion of the total resonance signals might be lost. But the resonance leptonic

decay daughters will very rarely be re-scattered by the hadronic medium since the

lepton-hadron interaction cross sections are much smaller than the hadron-hadron

interaction cross sections. Thus by measuring the resonance through the di-leptonic

decay channel, in principle we expect to measure all the resonance yield [38].

Recently, the φ meson production has been measured in central Pb+Pb collisions at

158A GeV at the CERN/SPS. The NA49 Collaboration [39] has identified the φ me-

son via the decay channel φ → K+K−, while the NA50 Collaboration [40] measured

it using φ → µ+µ− decay. It was found that the extracted number of φ mesons from

the di-muon channel exceeds by a factor between two and four the number extracted

from the K+K− channel. This difference has been attributed to the fact that not all

φ mesons can be reconstructed from the K+K− channel resulting from their decay

daughters re-scattering effect in the hadronic matter [38].

In the STAR Collaboration, we have successfully measured the ρ0 resonance produc-

tion via the ρ0 → π+π− decay channel [19]. With the full coverage Time Of Flight

(TOF) detector being installed in the next several years, electron signals are ex-

pected to be identified with a combination of the TPC and the TOF detector [11, 41].

Thus it will be possible for us to measure the ρ0 resonance di-electron decay channel

ρ0 → e+e− [42]. Due to the same reason addressed in the above, we expect to see

that the ρ0 meson yield extracted via the di-electron channel exceeds that via the

hadronic decay channel.

Besides giving supporting evidence to the existence of the resonance hadronic decay

daughters’ re-scattering effect in the hadronic medium, the ρ0 meson measured via

the di-leptonic channel can be used to probe the following two physics topics: (1) to

verify the resonance in-medium effects which modify the resonance properties (mass,

width and line shape) [19]; (2) to estimate the upper limit of the time scale between
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the chemical and kinetic freeze-outs.

As discussed in Section 1.2.2, resonance particles in the hot-dense medium would face

the in-medium effect thus the resonance mass, width and even the line shape might

be changed. In the STAR Collaboration, the resonance mass and width distributions

have been measured for ρ0 → π+π−, K∗0 → K+π− and ∆++ → pπ+ and their down-

ward mass shifts have been observed in Au+Au and p+p collisions at
√

sNN=200

GeV. This mass shift is evidence of an in-medium effect in the hot-dense medium.

However, we may also need the resonance di-leptonic decay channel measurements to

verify the resonance in-medium effect [18, 19, 21].

As discussed in Section 1.2.4, we might be able to use the K∗ resonance produc-

tion and the K∗/K ratios to estimate the lower limit of the time scale between the

chemical and kinetic freeze-outs since the K∗ hadronic daughters’ re-scattering effect

is much stronger than the re-generation effect. In fact, although the kaon and pion

interaction cross section is small, we still cannot totally ignore this kaon and pion

re-generation effect to produce the K∗ signals. Thus we can only estimate the lower

limit of the time scale by measuring the K∗/K ratio. Fortunately, we might be able

to use the resonance di-leptonic decay channel to estimate the upper limit of the time

scale since leptonic decay daughter can be very hardly re-scattered by the hadron

medium. In the case of ρ0 → e+e−, the ρ0 signals can be re-generated through the

π+π− interaction in the hadronic medium and the ρ0 resonance leptonic daughters

cannot be destroyed by the re-scattering effect. Then the ρ0 yield extracted from the

di-leptonic decay channel is expected to increase as a function of the time between

chemical and kinetic freeze-outs. Thus by measuring the ρ/π ratio via its di-leptonic

channel and compared to that from the hadronic channel, it may enable us to estimate

the upper limit of the time scale between chemical and kinetic freeze-outs.



Chapter 2

The STAR Experiment

2.1 The RHIC Accelerator

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab (BNL) is

the first collider to accelerate two counter-rotating heavy ion beams and is capable

of accelerating any combination of ion species, such as p+p, d+Au, Au+Au and so

on, with the colliding center-of-mass energy per nucleon-nucleon pair at
√

sNN = 200

GeV. Each ion can be accelerated to 99.995% the speed of light (v = 0.99995c). The

RHIC facility consists of two super-conducting magnets, each with a circumference of

2.4 miles, which focus and guide the beams. RHIC is designed for a Au+Au collision

luminosity of about 2×1026 cm−2sec−1 at top energy, while maintaining the potential

for future upgrades by an order of magnitude [43].

Figure 2.1 shows the BNL accelerator complex including the accelerators used to

bring the gold ions up to RHIC injection energy. First, gold ions are generated and

accelerated to 15 MeV/nucleon in the Tandem Van de Graaff facility. Then the gold

beam is transferred to the booster where it is accelerated to 95 MeV/nucleon. In the

AGS, the gold beam is bunched and further accelerated to 10.8 GeV/nucleon. Once

the gold beam is injected into the two counter-rotating rings of RHIC, the bunches are

accelerated to collision energy (100GeV/nucleon) and stored for data taking. Usually

the ring with a clock-wise rotating beam is called the Blue Ring and the ring with a

counter-clock-wise rotating beam is called the Yellow Ring [43].

22
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Figure 2.1: A disgram of the Brookhaven National Laboratory collider complex in-
cluding the accelerators that bring the nuclear ions up to RHIC injection energy (10.8
GeV/nucleon for 197Au). Figure is taken from [44].
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RHIC has six interaction points with 4 of them currently occupied: the STAR ex-

periment at the 6 o’clock point; the PHENIX experiment at the 8 o’clock point; the

PHOBOS experiment at the 10 o’clock point; the BRAHMS experiment at the 2

o’clock point.

2.2 Van der Meer Scan and Cross Section Mea-

surement

The interaction cross section as a function of transverse energy ET or charge multi-

plicity Nch is one of the necessary global event features for specifying the parameters

of the initial state in relativistic heavy ion collisions [45]. The Van der Meer Scan

(also known as Vernier Scan) is used to determine the luminosity and the total abso-

lute cross section.

The Van der Meer Scan was invented by S. van der Meer in 1968 who showed that it

is possible to measure the effective height he of the colliding ISR beams by observ-

ing the counting rate R in a suitable monitor system while sweeping the two beams

vertically through each other [46]. At RHIC, the beams are bunched and cogged

with zero crossing angle at the interaction point. STAR used the ZDC (Zero Degree

Calorimeter) to measure the neutrons emitted from nuclear fragments from Au+Au

collisions that missed the actual interaction zone [47]. The interation rate NZDC is

defined as the numbers of the beam particles (Nb1 and Nb2) going through each other

in some area A with cross section σ [48, 49]

NZDC =
Nb1Nb2

A
σ = Lσ (2.1)

For two beams (Blue and Yellow in our case) with Gaussian distribution ρ(x, y) in

both horizontal and vertical directions, we have the luminosity L as

L = frev

∫ +∞

−∞

∫ +∞

−∞
ρ1(x, y)ρ2(x, y)dxdy (2.2)

where frev is the revolution frequency (7.8×104 Hz),

ρi = Ni
1√

2πσxi

exp[− x2

2σ2
xi

]
1√

2πσyi

exp[− y2

2σ2
yi

] (2.3)
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with i = 1, 2 for blue and yellow beams respectively and Ni are number of particles

per bunch assuming all bunches in one beam are the same. Integrating over x and y,

the luminosity is given by

L =
frevN1N2

2π
√

(σ2
x1 + σ2

x2)(σ
2
y1 + σ2

y2)
(2.4)

If one beam is displaced by d in the x direction, we have

ρ1 = N1
1√

2πσx1

exp[−(x− d)2

2σ2
x1

]
1√

2πσy1

exp[− y2

2σ2
y1

] (2.5)

Then the luminosity L(d) as a function of d is

L =
frevN1N2

2π
√

(σ2
x1 + σ2

x2)(σ
2
y1 + σ2

y2)
exp[− d2

2(σ2
x1 + σ2

x2)
] (2.6)

Now we can see that the luminosity L(d) is a Gaussian distribution as a function

of the displacement d and the width (
√

σ2
x1 + σ2

x2) of the Gaussian distribution from

Vernier Scan is the width required in luminosity calculation. Thus by measuring

the interaction rate NZDC for different beam displacement d in the x or y direction

respectively, we can determine the beam profile σV x and σV y, where

σV x =
√

σ2
x1 + σ2

x2 (2.7)

σV y =
√

σ2
y1 + σ2

y2 (2.8)

From Equation 2.4, we know that we have to measure beam currents (N1, N2) and

beam profiles (σV x, σV y) for a certain number of bunches kb in the beam. The total

beam intensity is measured by sensitive “DC” transformer and the bunched beam

intensity is measured with a wideband wall current pickup [49]. The beam profile is

measured by the van der Meer Scan described above. There are two Beam Position

Monitors (BPM) [49] in each side of the interaction point measuring the Yellow and

Blue beam x and y positions, respectively. Because the beam intensities in both Blue

and Yellow rings decrease as a function of time, we normalize the ZDC counts with



26

the beam intensities as NZDC/(N1N2) to cancel out this effect. Thus the absolute

cross section in Au+Au collisions with zero beam displacement is

σAu+Au = (
NZDC

N1N2

)
2πkbσV xσV y

frev

(2.9)

where kb is the number of bunches in a beam (kb =55).
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Figure 2.2: The BPM measured Blue beam horizontal and vertical position as a
function of time for the scan Vernier3 at the STAR interaction point.

There is at least one Vernier Scan carried out for each interaction point. At the

STAR interaction point, we have three carefully measured scans. The three scans are

Vernier1 (beginning at September 21st, 2001, 15:17), Vernier2 (beginning at October

22nd, 2001, 15:50) and Vernier3 (beginning at November 15th, 2001, 21:14). For each

beam horizontal and vertical set position, we recorded the beam intensities of both

beams, the beams’ horizontal and vertical positions, ZDC counts averaging over one

minute and the time of the measurement.

Figure 2.2 shows the BPM measured Blue beam horizontal and vertical position as a

function of time for the scan Vernier3 at the STAR interaction point. This scan was

performed by setting the correcting magnet to steer the beam to the desired position
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Figure 2.3: The BPM measured beam horizontal (left) and vertical (right) position
(average of Blue and Yellow beams) vs. the set beam position for the scan Vernier3
and fit with a linear function y = ax + b.

with each step 250 µm. Figure 2.3 shows the BPM measured beam horizontal and

vertical position vs. the set beam position and fit with a linear function. From this

figure, we can see that the measured beam positions are well calibrated and have a

resolution in the order of 10 µm.

Figure 2.4 shows the calculated NZDC/(N1N2) (in unit of 10−18Hz) vs. the beam

horizontal and vertical positions and fit with a Gaussian function plus a constant

representing any possible background. From the fit, we can extrapolate the beam

profiles σV x = 361 ± 6 µm and σV y = 345 ± 6 µm.

Using Equation 2.9, the raw Au+Au total cross section can be calculated as 9.05

± 0.22 barn. Since not all bunches in both beams are equally filled with particles,

the raw total cross section is then corrected with the fill pattern [49]. By averaging

the corrected total cross sections measured with all scans, we get the final Au+Au

inclusive double neutron disassociation cross section σAu+Au = 9.8 ± 0.2 ± 1.2 barn

at collision energy
√

sNN = 200 GeV.
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Figure 2.4: The R (= NZDC/(N1N2)) vs. the measured beam horizontal (left) and
vertical (right) position and fit with a Gaussian function R = a + Rmaxexp[−(x −
x0)

2/2σ2].

2.3 The STAR Detector

The Solenoidal Tracker at RHIC (STAR) is one of the two large detector systems

constructed at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National

Laboratory. It was constructed to investigate the behavior of strongly interacting

matter at high energy density and to search for signatures of quark gluon plasma

(QGP) formation. STAR can measure many observables simultaneously to study

signatures of a possible QGP phase transition and to understand the space-time evo-

lution of the collision process in relativistic heavy ion collisions. The goal is to obtain

a fundamental understanding of the microscopic structure of these hadronic inter-

actions at high energy densities. In order to accomplish this, STAR was designed

primarily for measurements of hadron production over a large solid angle, featur-

ing detector systems for high precision tracking, momentum analysis, and particle

identification at the center of mass rapidity. The large acceptance of STAR makes
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Figure 2.5: Perspective view of the STAR detector, with a cutaway for viewing inner
detector systems. Figure is taken from [50].

it particularly well suited for event-by-event characterizations of heavy ion collisions

and for the detection of hadron jets [50].

The layout of the STAR detector is shown in Figure 2.5. A cutaway side of the STAR

detector as configured for the RHIC 2001 run is displayed in Figure 2.6. A large

volume Time Projection Chamber (TPC) for charged particle tracking and particle

identification is located at a radial distance from 50 to 200 cm from the beam axis.

The TPC is 4 meters long and it covers a pseudo-rapidity range |η| ≤ 1.8 for tracking

with complete azimuthal symmetry (∆φ = 2π). A solenoidal magnet with a maxi-

mum magnetic field of 0.5 T provides a uniform magnetic field for charged particle

momentum analysis. Charged particle tracking close to the interaction region is ac-

complished by a Silicon Vertex Tracker (SVT) consisting of 216 silicon drift detectors.

To extend the tracking to the forward region, a radial-drift Forward TPC (FTPC) is

installed covering 2.5 < |η| < 4, also with complete azimuthal coverage and symme-

try. To extend the particle identification in STAR to larger momenta, a ring imaging

Cherenkov detector (RICH) covers |η| < 0.3 and ∆φ = 0.11π is installed [50].
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Figure 2.6: Cutaway side view of the STAR detector. Figure is taken from [50]

The fast detectors that provide input to the trigger system are a central trigger bar-

rel (CTB) at |η| < 1 and two zero-degree calorimeters (ZDC) located in the forward

directions at θ < 2 mrad. The CTB surrounds the outer cylinder of the TPC, and

triggers on the flux of charged particles in the mid-rapidity region. The ZDCs are

used for determining the energy in neutral particles remaining in the forward direc-

tions [50]. Besides, two Beam-Beam Counters (BBC) which measure the charged

particle multiplicity near beam rapidity are used to define the trigger in p+p colli-

sions.

2.3.1 The Time Projection Chamber

The STAR detector uses the TPC as its primary tracking device. The TPC records

the tracks of charged particles, measures their momenta, and identifies the parti-

cles by measuring their ionization energy loss (dE/dx). Its acceptance covers ±1.8

units of pseudo-rapidity through the full azimuthal angle and over the full range of

multiplicities. Particles are identified over a momentum range from 100 MeV/c to

greater than 1 GeV/c and momenta are measured over a range of 100 MeV/c to 30
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GeV/c [51].

The STAR TPC is shown schematically in Figure 2.7. It is an empty volume of gas

in a well defined uniform electric field of ≈ 135 V/cm. The uniform electric field

which is required to drift the electrons and is defined by a thin conductive Central

Membrane (CM) at the center of the TPC, concentric field cage cylinders and the

Figure 2.7: The STAR TPC surrounds a beam-beam interaction region at RHIC. The
collisions take place near the center of the TPC. Figure is taken from [51].

readout end caps. The TPC is a fully pixelized drift chamber with a Multi-Wire

Proportional Chamber (MWPC) at both ends of the TPC for readout. The TPC

has 144,000 pads which give x-y coordinate information and up to 512 time buckets

which provide z-position information for each hit, a total of 70 million pixels. The

TPC is filled with P10 gas (10% methane, 90% argon) regulated at 2 mbar above

atmospheric pressure. It’s primary attribute is a fast drift velocity which peaks a t a

low electric field [51].

Charged particles can be detected in drift chambers because they ionize the gas along

their flight path. The energy required for ionization is very small, typically a few keV
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per cm. When a charged particle traverses the TPC volume, it ionizes on average gas

atoms and molecules every few tenths of a millimeter along its path and leaves behind

a cluster of electrons. Under the influence of an externally applied electric field, the

electron clusters then drift at a constant average velocity to the readout electronics

where their time of arrival and location are recorded.

Figure 2.8: Beam’s eye view of a central Au+Au collision event in the STAR Time
Projection Chamber. This event was drawn by the STAR online display. Figure is
taken from [50].

At the Data Acquisition (DAQ) stage, raw events containing millions of ADC values

were recorded to tapes. Raw data were then reconstructed into meaningful quantities

such as hits, tracks, vertices, etc. In the event reconstruction stage, starting from the

hit with the lowest track density at the outer wall of the TPC, the Kalman Filter

method is used to fit the hits in a uniform magnetic field to form a global track. Once

all the global tracks in an event are reconstructed, the trajectories of selected global

tracks are extrapolated to the beam axis to be at x = y = 0 and thus the z position

of the primary collision vertex of this event is found. Then the global tracks with a
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3-dimensional distance of closest approach (DCA) to the primary vertex less than 3

cm are chosen for a re-fit by forcing a new track helix ending at the primary vertex.

These newly reconstructed helices are called primary tracks. Figure 2.8 shows the

beam’s eye view of a central Au+Au collision event in the STAR TPC.

2.3.2 Particle Identification (PID)

Charged tracks passing through the TPC will lose energy via ionization. The total

ionized charges collected from each hit on a track are proportional to the energy loss

of the particle. For a particle with charge Z (in units of e) and speed β = v/c passing

through a medium with density ρ, the mean energy loss it suffers can be described

by the Bethe-Bloch formula

〈dE

dx
〉 = 2πN0r

2
emec

2ρ
Zz2

Aβ2
[ln

2meγ
2v2EM

I2
− 2β2] (2.10)

where N0 is Avogadro’s number, me is the electron mass, re (= e2/me) is the classi-

cal electron radius, c is the speed of light, z is the atomic number of the absorbing

material, A is the atomic weight of the absorbing material, γ = 1/
√

1− β2, I is the

mean excitation energy, and EM (= 2mec
2β2/(1− β2)) is the maximum transferable

energy in a single collision [52].

From the above equation, we can see that different charged particles (electron, pion,

kaon, proton or deuteron) with the same momentum p passing through the TPC

gas can cause different amount of mean energy loss. Figure 2.9 shows the negatively

charged particles’ energy loss dE/dx vs. momentum p. We can see that different

charged particles have their own dE/dx vs. p band in the figure. Thus we can use

the energy loss in the TPC to identify different charged particle types. Qualitatively

speaking, from the above figure, we can identify charged pions and kaons with momen-

tum up to about 0.75 GeV/c and identify protons and anti-protons with momentum

up to about 1.1 GeV/c.

In order to quantitatively describe the particle identification, we define the variable

Nσπ (in the case of charged pion identification) as

Nσπ = [
dE

dx meas.
− 〈dE

dx
〉π]/[

0.55√
N

dE

dx meas.
] (2.11)
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Figure 2.9: Negatively charged particles’ ionization energy loss vs. momentum in
TPC. The curves are the Bethe-Bloch function shown in Equation 2.10 for different
particle species.

in which N is the number of hits for a track in the TPC, dE
dx meas.

is the measured

energy loss of a track and 〈dE
dx
〉π is the mean energy loss for charged pions. In order

to identify charged kaons, protons and anti-protons, we can have similar definition of

NσK and Nσp. Thus we can cut on the variables Nσπ, NσK and Nσp to select different

particle species.

A specific part of the particle identification is the topological identification of neutral

particles, such as the K0
S and Λ. These neutral particles can be reconstructed by iden-

tifying the secondary vertex, commonly called V0 vertex, of their charged daughter

decay modes, K0
S → π+π− and Λ → pπ−.



Chapter 3

Analysis Methods

3.1 Trigger

During the second RHIC run (2001-2002), RHIC performed Au+Au and p+p colli-

sions at a nucleon-nucleon center-of-mass energy of
√

sNN = 200GeV. In the STAR

detector, the experimental setup consisted of a Time Projection Chamber (TPC),
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a Central Trigger Barrel (CTB), a pair of Beam-Beam Counters (BBC) and two

Zero Degree Calorimeters (ZDC) located upstream along the beam axis. The large

solenoidal magnet provided a magnetic field of 0.5 Tesla.

In Au+Au collisions, the minimum bias trigger was defined by requiring greater than

75 CTB counts and coincidences between the two ZDC’s which measured the spec-

tator neutrons. CTB counts fewer than 75 together with coincidences between two

ZDC’s defined an Ultra-Peripheral Collision (UPC) trigger. Figure 3.1 shows the

sum of the east and west ZDC counts vs. the CTB counts in Au+Au collisions at
√

sNN=200GeV. Greater than 10,000 CTB counts and the sum of east and west ZDC

counts less than 75 were required to trigger the top 10% central Au+Au collision

events. In p+p collisions, the minimum bias trigger was defined using coincidences

between two BBC’s. The cross section of minimum p+p collisions is 31±3 mb while

the total inelastic p+p collision cross section is 42 mb.
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Figure 3.2: The uncorrected reference multiplicity distribution for minimum bias
triggered Au+Au collision events. The four centrality regions used in this analysis
are shown.
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3.2 Event Selection

To roughly achieve uniform acceptance in the pseudo-rapidity range, the collision

vertex was required to be within ±50cm along the beam line. About 2M top 10%

central triggered and 2M minimum bias triggered Au+Au collision events and 6M

minimum bias triggered p+p collision events were used in this analysis.

Figure 3.2 shows the uncorrected reference multiplicity distribution from minimum

bias triggered Au+Au collisions. The reference multiplicity was defined as the number

of charged primary tracks in a pseudo-rapidity (η) range −0.5 < η < 0.5 in each

collision event. According to this uncorrected reference multiplicity, the events from

minimum bias Au+Au collisions were then divided into four centrality bins from the

most central to peripheral collisions: 0%-10%, 10%-30%, 30%-50% and 50%-80%.

Table 3.1 lists the uncorrected reference multiplicity ranges for centrality definitions.

Centrality Bin Uncorr. RefMult Range Uncorr. Ncharge Corrected Ncharge

0%-10% RefMult ≥ 431 511.4 620.4
10%-30% 217 ≤ RefMult < 431 313.7 354.0
30%-50% 94 ≤ RefMult < 217 148.6 159.5
50%-80% 14 ≤ RefMult < 94 44.1 48.3

Table 3.1: Centrality definitions for different uncorrected reference multiplicity
ranges. Uncorrected Ncharge stands for the average value of uncorrected reference
multiplicity in certain centrality bin. The fourth column represents the efficiency
corrected value of Ncharge.

3.3 Track Selection

In this analysis, we observe the hadronic decay channels of K∗0(892)→ K+π−, K∗0(892)→
K−π+ and K∗±(892)→ K0

Sπ±. In the following text, the term K∗0 stands for K∗0

and K∗0 while K∗ stands for K∗0, K∗0 and K∗± unless specified. The lifetime of the

K∗ is 3.89 fm/c so that the K∗ meson will decay extremely close to the primary col-

lision vertex and the daughters would appear to originate from the interaction point.

In the case of the K∗0, we select charged kaon and charged pion candidates from
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primary tracks whose measured distance of closest approach (DCA) to the primary

interaction vertex were less than 3.0 cm in Au+Au collision events. In p+p collision

events, we selected primary tracks with their DCA to the primary collision vertex

less than 4.0 cm. In the case of K∗±, first, a charged K∗ would undergo a strong

decay to produce a K0
S and a charged pion which we name as a daughter pion of

the charged K∗. Second, the newly produced K0
S would undergo a weak decay via

K0
S → π+π− with cτ=2.67 cm. We name these two oppositely charged pions from K0

S

decay as grand-daughter pions of the charged K∗. We select the charged daughter

pion candidates from primary tracks and select K0
S candidates through their decay

vertex geometries since STAR has shown its great ability in measuring this V0 shaped

decay mode through the decay topology method.

In Au+Au collisions, charged kaon candidates for the K∗0 analysis were selected by

requiring their dE/dx to be within two standard deviations (2σ) of the expected

value (|Nσπ| < 2) while a looser dE/dx cut of 3σ was used for charged pion candi-

dates (|NσK | < 3). A pseudo-rapidity cut |η| < 0.8 was applied to all the kaon and

pion candidate tracks in order to reduce the event-to-event multiplicity variations in

the high pseudo-rapidity range. Kaons and pions were also required to have at least

15 fit points to assure the track fitting quality. Also, in order to avoid selecting split

tracks, the ratio of number of fit points over maximum possible points was required

to be greater than 0.55 for all the candidate tracks. Only the tracks with both their

momenta (p) and transverse momenta (pT ) larger than 0.2 GeV/c were selected in

order to enhance track quality. Although using the STAR TPC detector, we can

only identify kaons and pions with momenta up to 0.75 GeV/c, we select tracks with

momenta up to 10 GeV/c in order to keep the largest possible statistics for the K∗0

analysis in Au+Au collisions. Doing this may lead to mis-identified correlated pairs

and contaminate the K∗0 invariant mass spectra. We will discuss this issue in detail

in section 3.5.

In p+p collisions, we have enough statistics to precisely measure the K∗0 invariant

mass spectra and the K∗0 mass and width distributions as a function of transverse

momentum so that we need to have minimal contamination from mis-identified cor-

related pairs. Thus a clean PID cut was applied to the kaon candidate tracks which
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required kaon momenta p < 0.7 GeV/c and kaon transverse momenta pT < 0.7 GeV/c.

The pion momenta and transverse momenta cuts were kept the same as in Au+Au

collisions. A tighter dE/dx cut of 2σ was also used for both the pion and the kaon

candidate tracks (|Nσπ,K | < 2). All the other track cuts for both kaon and pion can-

didates in the K∗0 analysis in p+p collisions were the same as in Au+Au collisions.

In the case of the charged K∗, due to the extremely short lifetime of the charged K∗,

the daughter pion should seem to originate from the primary collision vertex so that

all the cuts applied to the daughter pion candidates were the same as the pion track

cuts in K∗0 analysis in Au+Au collisions. The grand-daughter charged pion candi-

dates were selected from global tracks with their DCA’s to the primary vertex greater

than 0.5 cm to reconstruct the K0
S signals. Candidate grand-daughter charged pions
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Figure 3.3: The π+π− invariant mass distribution representing K0
S reconstructed from

the decay topology method via K0
S → π+π− in p+p collisions.

were also required to have at least 15 hit points in the TPC and momenta greater

than 0.2 GeV/c. Oppositely charged candidates, if their DCA to each other was less

than 1.0 cm, were then paired to form neutral decay vertices which were required

to be at least 2.0 cm in distance from the primary vertex. The reconstructed K0
S

momentum vector was required to point back by a straight line to the primary vertex
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within 1.0 cm. Figure 3.3 shows the π+π− invariant mass distribution representing

the K0
S in p+p collisions. In order to reduce the combinatorial background, only the

K0
S candidates with π+π− invariant mass in the range between 0.48 and 0.51 GeV/c2

were selected. When pairing the K0
S candidates with daughter pions to reconstruct

the charged K∗ signal, track ID’s (unique numbers asigned to each track in the event

reconstruction stage) were checked in order to avoid using the same track to be the

daughter pion and grand-daughter pion.

In a summary, all the cuts used in K∗ analysis are listed in Table 3.2

Cuts
K∗0 K∗± in p+p

Au+Au p+p Daughter π± K0
S

NσK (-2.0, 2.0) (-2.0, 2.0) decayLength>2.0cm
Nσπ (-3.0, 3.0) (-2.0, 2.0) (-2.0, 2.0) dcaDaughters<1.0cm

Kaon p (GeV/c) (0.2, 10.0) (0.2, 0.7) dcaV0PrmVx<1.0cm
Kaon pT (GeV/c) (0.2, 10.0) (0.2, 0.7) dcaPosPrmVx>0.5cm
Pion p (GeV/c) (0.2, 10.0) (0.2, 10.0) (0.2, 10.0) dcaNegPrmVx>0.5cm
Pion pT (GeV/c) (0.2, 10.0) (0.2, 10.0) (0.2, 10.0) MK0

S
: (0.48, 0.51)

NFitPnts > 15 > 15 > 15 π+: NTpcHits > 15
NFitPnts/MaxPnts > 0.55 > 0.55 > 0.55 π−: NTpcHits > 15
Pseudo-Rapidity η |η| < 0.8 |η| < 0.8 |η| < 0.8 π+: p > 0.2 GeV/c

DCA (cm) < 3.0 < 4.0 < 4.0 π−: p > 0.2 GeV/c
Pair Rapidity y |y| 0.5 |y| < 0.5 |y| < 0.5

Table 3.2: List of charged kaon and charged pion track cuts and neutral kaon topo-
logical cuts used for K∗ analysis in Au+Au and p+p collisions. The unit of MK0

S
is

GeV/c2.

3.4 Building the Signal

In relativistic heavy-ion collisions, the STAR TPC can record up to several thousand

charged tracks per event originating from the primary collision vertex. It’s impossible

to build the K∗0 signal by only selecting the kaon and pion daughters, because these

tracks are indistinguishable from other primary tracks. Therefore, we use the following

method to reconstruct the signal. By pairing each oppositely charged kaon and pion

in an event, we can calculate the Kπ pair invariant mass spectrum. Figure 3.4
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Figure 3.4: Kπ invariant mass distribution from same-event pairs in minimum bias
triggered Au+Au collisions. Symbols shown represent counts in 20MeV/c2 bins.

shows the Kπ invariant mass distribution from same-event pairs in minimum bias

triggered Au+Au collisions. The invariant mass distribution derived in this manner

is mostly from random combinatorial Kπ pairs which have no correlation at all. The

K∗0 signal in this invariant mass spectrum is only a small fraction as big as ∼0.1%

of the background in the K∗0 mass range. We must subtract the huge amount of

combinatorial background to make visible the real K∗0 signal. There are two possible

ways of calculating the background so that it may be subtracted: (1) the event-mixing

technique: building a reference distribution calculated using uncorrelated oppositely

charged kaons and pions from different events; (2) the like-sign technique: building

a reference distribution calculated using kaons and pions with the same charge from

the same event.

3.4.1 Event-Mixing Technique

The same-event Kπ pair invariant mass spectrum contains a small subset of signal

pairs for which the pair-partner momenta are in fact correlated (i.e. from the same

parent K∗) and a large subset of signal pairs for which the pair-partner momenta
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are not correlated. In order to subtract the subset of non-correlated pairs, a second

mixed-event sample of pairs is formed, in which the first pair partner is taken from

one event and the second pair partner is taken from another event. In doing this, the

pair partners’ momenta in the mixed-event sample are totally uncorrelated.

In order to keep as much as possible similar event structure between mixed events,

we divided the whole data sample into 10 uniform multiplicity bins and 10 uniform

vertex Z position bins. We then only select the second pair partner from events in

the same multiplicity bin and the same vertex Z position bin as the event which the

first pair partner was from.
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Figure 3.5: The same-event Kπ pair invariant mass spectrum (solid symbols) and the
mixed-event Kπ pair invariant mass spectrum after normalization (solid curve).

In the same-event spectrum, we sampled K+
1 π−1 and K−

1 π+
1 pairs. In the mixed-event

spectrum, we sampled K+
1 π−2 , K−

1 π+
2 , K+

2 π−1 and K−
2 π+

1 pairs. The subscripts 1

and 2 stand for event number 1 and event number 2, respectively. We can choose

the second pair partner from many other events to reduce the statistical errors in

the mixed-event spectrum. We choose to mix with five other events so that the

total number of entries in the mixed-event spectrum would be about ten times as

much as the total number of entries in the same-event spectrum. Thus we need
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to normalize the mixed-event spectrum before the background subtraction for the

same-event spectrum. In the same-event spectrum, the Kπ pairs with their invariant

mass greater than 1.1 GeV/c2 are very unlikely to be correlated so that we calculate

the normalization factor by taking the ratio of the number of entries in the same-

event spectrum with invariant mass > 1.1 GeV/c2 to the number of entries in the

mixed-event spectrum also with invariant mass > 1.1 GeV/c2. Figure 3.5 shows the

same-event Kπ pair invariant mass spectrum and the mixed-event Kπ pair invariant

mass spectrum after normalization. The mixed-event spectrum as the background is

subtracted from the same-event spectrum as shown in Equation 3.1:

NK∗0(m) = NK+
1 π−1

(m)+NK−
1 π+

1
(m)−R×

6∑
i=2

[NK+
1 π−i

(m)+NK−
1 π+

i
(m)+NK+

i π−1
(m)+NK−

i π+
1
(m)]

(3.1)

in which N stands for the count in a bin of Kπ pair invariant mass with its bin center

at m, and R represents the normalization factor. After the mixed-event background

subtraction, the K∗0 signal is visible as shown in the Kπ pair invariant mass spectrum

in Figure 3.6. Below the K∗0 signal, there is a certain amount of residual background
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Figure 3.6: The Kπ pair invariant mass spectrum after mixed-event background
subtraction indicating K∗0 signal.
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which will be discussed in detail in section 3.5.

The event-mixing technique has been widely and successfully used in resonance pro-

duction analysis besides K∗, such as φ [20], ∆++ [21], Λ∗(1520) [23] and Σ∗(1385) [22],

in relativistic heavy ion collisions in RHIC. The event-mixing technique has also been

tested in measuring the Λ production in Au+Au collisions at
√

sNN=130 GeV with

data taken during the first RHIC run in 2000. Results included in [54] are now dis-

cussed briefly here.

As a check on the event-mixing technique, we measured the Λ strange baryon through

its weak decay channel Λ → pπ− and Λ → pπ+. Considering its relatively large de-
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Figure 3.7: Invariant mass distribution of Λ (solid symbols) and Λ (open symbols) us-
ing the event-mixing technique from 197K minimum bias triggered Au+Au collisions
events at

√
sNN=130GeV.

cay length (cτ=7.89 cm), we selected proton and anti-proton candidates and charged

pion candidates from global tracks. The Λ and Λ signals are shown in the pπ− and

pπ+ invariant mass spectrum after mixed-event background subtraction in Figure 3.7.

Figure 3.8 shows the Λ and Λ rapidity density as a function of negative hadron mul-

tiplicity at mid-rapidity. The open symbols in Figure 3.8 are the results measured
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Figure 3.8: Λ and Λ rapidity density as a function of negative hadron multiplicity at
mid-rapidity. Open symbols represent results from event-mixing technique and solid
symbols stand for results from decay topology technique. Figure is taken from [54].

using the event-mixing technique while solid symbols are from the V0 decay topol-

ogy measurement. We can see that the event-mixing results agreed well with the V0

measurements and the event-mixing technique was successful in measuring the Λ and

Λ production.

3.4.2 Like-Sign Technique

Besides the event-mixing technique, another approach to subtract the subset of non-

correlated pairs from the same-event Kπ pair invariant mass spectrum is to use the

like-sign technique. After the same-event sample of Kπ pairs is formed in one event,

a second like-sign set of pairs is formed, in which the pairs consist of pair partners

which have the same charge sign and are taken from the same event.

In the same-event Kπ pair invariant mass spectrum, we sampled K+
1 π−1 and K−

1 π+
1

pairs and in the like-sign Kπ pair invariant mass spectrum, we sampled K+
1 π+

1 and

K−
1 π−1 pairs. Since the number of positive tracks may not be the same as the number of

negative tracks in relativistic heavy ion collision events, in order to correctly subtract
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the subset of non-correlated pairs in the same-event spectrum, the like-sign invariant

mass spectrum was calculated as shown in Equation 3.2 after getting the K+
1 π+

1 and

K−
1 π−1 pair invariant mass spectra respectively:

NLike−Sign(m) = 2×
√

NK+
1 π+

1
(m)×NK−

1 π−1
(m) (3.2)

Figure 3.9 shows the same-event Kπ pair invariant mass spectrum and the like-sign

Kπ pair invariant mass spectrum calculated using Equation 3.2. Thus the like-sign
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Figure 3.9: The same-event Kπ pair invariant mass spectrum (solid symbols) and the
like-sign Kπ pair invariant mass spectrum (solid curve).

spectrum can be subtracted from the same-event spectrum in the way as shown in

Equation 3.3:

NK∗0(m) = NK+
1 π−1

+ NK−
1 π+

1
− 2×

√
NK+

1 π+
1
(m)×NK−

1 π−1
(m) (3.3)

The like-sign background subtracted Kπ pair invariant mass spectrum is shown in

Figure 3.10 and a K∗0 signal is thus visible.

Compared with the event-mixing technique, the like-sign technique has an advantage

in that the same-event and like-sign pairs are taken from the same events so that there

is no event structure difference between the like-sign spectrum and the same-event



47

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
0

1000

2000

3000

4000

5000

6000

2x10

)
2

 Inv. Mass (GeV/cπK

 Signal*0K

Figure 3.10: The Kπ invariant mass spectrum after like-sign background subtraction
indicating K∗0 signal.

spectrum due to effects such as elliptic flow effect [56]. The like-sign technique has

also been successfully applied in studying the ρ0(770) production [19] by measuring

the decay channel ρ0 → π+π− in Au+Au and p+p collisions at
√

sNN=200 GeV in

RHIC. In the π+π− pair invariant mass spectrum, correlated π+π− pairs may come

from many possible particles such as ρ0, K0
S, ω, η, η′ and f0 so that the invariant

mass spectrum might be complicated enough that we must avoid the event structure

difference which might be brought by the event-mixing technique.

The short-coming of like-sign technique is that the counts in the like-sign background

subtracted spectrum have larger statistical uncertainties than the counts in the mixed-

event background subtracted spectrum, since by using event-mixing technique, we can

sample the background oppositely charged Kπ pairs by mixing one event with many

other events.

In this K∗0 analysis, reducing statistical errors is important so we use the event-

mixing technique to reconstruct the K∗0 signal while using the like-sign technique to

study the sources of the residual background under the K∗0 peak after mixed-event
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background subtraction which will be addressed in detail in Section 3.5.

3.5 Describing the Background

The event-mixing technique is in general effective in reconstructing resonance signals

in heavy-ion collisions where the topological method used in K0
S and Λ reconstruction

is not possible. Nevertheless, the mixed-event combinatorial background cannot per-

fectly reproduce the background in the same-event spectrum. Thus after mixed-event

background subtraction, there is always a certain amount of residual background re-

maining under the resonance signal [55, 56]. In the case of the K∗0 analysis, Figure

3.6 and the open star symbols in Figure 3.11 show the Kπ pair invariant mass spec-

trum after mixed-event background subtraction, indicating the K∗0 signal. Under

the K∗0 signal, there is a certain amount of residual background which has not been

subtracted by the mixed-event spectrum. This residual background comes from three

dominant sources: (1) elliptic flow effect in non-central Au+Au collisions; (2) cor-

related real Kπ pair from particles’ decay; (3) correlated but mis-identified pairs.

3.5.1 Elliptic Flow Effect

In non-central Au+Au collisions, the event in the plane perpendicular to the beam

axis exhibits an elliptic shape. The long axis of the “ellipse” of the particle distribution

in momentum space together with the beam axis defines the event’s reaction plane.

Each non-central Au+Au collision event has its unique reaction plane angle. Thus the

azimuthal distributions for pion and kaon particles are different for different events. In

event-mixing, the same-event Kπ pair invariant mass spectrum obtained in one event

will have different structure from the mixed-event invariant mass spectrum calculated

from Kπ pairs whose pair partners are from different events which have different

reaction planes. This structure difference between the same-event and mixed-event

spectra will lead to a residual background in the Kπ invariant mass distribution after

mixed-event background subtraction.



49

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

0

200

400

600

800

1000

1200
3x10

)TMixed-Event (All p

)TLike-Sign (All p

<0.7)T 3 Like-Sign (0.2<K p×

<0.7)T pπ 3 Like-Sign (0.2<K,×

)2 Inv. Mass (GeV/cπK

Figure 3.11: Different cuts from a like-sign study demonstrate the sources of back-
ground under the K∗0 peak. The counts for the open squared symbols and the filled
circle symbols have been scaled up by a factor of 3 in order to increase the visibility.
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Using the like-sign technique, the same-event spectrum and the like-sign spectrum

come from the same single event so that the elliptic flow effect can not cause this

residual background. In Figure 3.11, the solid square symbols represent the Kπ

invariant mass distribution after like-sign background subtraction. The amplitude

of the residual background after like-sign background subtraction is ∼40% smaller

than the amplitude of the residual background after the mixed-event background

subtraction while the amplitude of the K∗0 remains the same. The difference clearly

shows the elliptic flow effect induced residual background.

3.5.2 Correlated Real Kπ Pairs

Using the event-mixing technique, the subset of all correlated Kπ pairs in the same-

event spectrum cannot be subtracted by the mixed-event spectrum. In the same-event

spectrum, besides the Kπ pairs from K∗0 decay, there are correlated Kπ pairs from

other particles with a decay mode into a Kπ pair. None of these correlations are

present in the mixed-event spectrum so that they are not subtracted away.

In the case of two-body decay modes, K∗(1410), K∗
0(1430), K∗

2(1430), K∗(1680), D0

and many other particles can decay into an oppositely charged Kπ pair. But the

invariant mass reconstructed by using the exact daughter kaon and daughter pion

from the decay of the above particles is larger than the K∗0 mass so that the Kπ

pairs from the above particles’ two-body decay don’t contribute much to the residual

background right under the K∗ signal.

Some particles can decay into more than two final daughters and two of the final decay

daughters can be counted as an oppositely charged Kπ pairs, such as K1(1400)→
Kρ → Kππ, K∗(1410)→ Kρ → Kππ, K2(1770)→ Kππ, etc. Thus the invariant

mass calculated by these Kπ pairs may have the same value as the K∗0 mass so that

these Kπ pairs can contribute to the residual background.

3.5.3 Mis-Identified Kπ Pairs

Through the energy loss (dE/dx) in the STAR TPC, kaon and pion particles can

be identified only when their momenta are less than 0.7 GeV/c and protons can be
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identified only when their momenta are less than 1.1 GeV/c. In Au+Au collisions,

we selected kaon and pion candidates with their momenta between 0.2 GeV/c and

10.0 GeV/c. Thus a pion (kaon) track with momentum greater than 0.7 GeV/c can

be mis-identified as a kaon (pion) track. A proton track with momentum greater

than 1.1 GeV/c can be mis-identified as either a kaon track or a pion track or both

depending on whether we are selecting kaon or pion candidate tracks.

In the case of ρ0 → π+π−, if its positive (negative) pion daughter has a momentum

greater than 0.7 GeV/c, it can be falsely reconstructed as a K∗0 (K∗0). If both daugh-

ters have momenta greater than 0.7 GeV/c, it can be mis-identified twice as both a

K∗0 and a K∗0. The situation is the same for the following particles: K0
S → π+π−,

η → π+π−π0, ω → π+π−(π0), f0(980)→ π+π−, etc. A similar situation can also

exist for φ → K+K− whose one or both kaon daughters can be mis-identified as

pion(s). In the case of Λ → pπ− (Λ → pπ+), if the proton (anti-proton) momentum

is greater than 1.1 GeV/c, it can be mis-identified as a K∗0 (K∗0). In the case of

Λ∗(1520)→ pK− (Λ∗(1520)→ pK+), if the proton (anti-proton) momentum is greater

than 1.1 GeV/c and the negative (positive) kaon momentum is less than 0.7 GeV/c, it

can be mis-identified as a K∗0 (K∗0). But when the proton (anti-proton) momentum

is greater than 1.1 GeV/c and the negative (positive) kaon momentum is greater than

0.7 GeV/c, it can be mis-identified twice.

All the above particles can be falsely reconstructed as a K∗0 or a K∗0 or both if their

daughter particles’ momenta sit in a certain range. The invariant mass calculated

from their mis-identified decay daughters will be different from their own mass and

might be similar to the K∗0 mass.

In Figure 3.11, the solid square symbols are for the Kπ pair invariant mass spec-

trum after like-sign background subtraction with both the kaon and pion momenta in

the range between 0.2 GeV/c and 10.0 GeV/c. Both the correlated real Kπ pairs and

mis-identified Kπ pairs (with one or two daughters mis-identified) can contribute

to the residual background. The open triangle symbols are for the spectrum after

like-sign background subtraction with kaon momentum between 0.2 GeV/c and 0.7
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GeV/c and pion momentum between 0.2 GeV/c and 10.0 GeV/c. Besides the corre-

lated real Kπ pairs’ contribution, only the particles with one daughter mis-identified

can contribute to the residual background. Compared to the solid square symbols,

the residual background is reduced by ∼90% and the K∗0 is ∼50% smaller in the

open triangle symbols. The solid circle symbols represent the spectrum after like-sign

background subtraction with both kaon and pion momentum between 0.2 GeV/c and

0.7 GeV/c so that no particle can be mis-identified as a K∗0 or K∗0 and only the

correlated real Kπ pairs can contribute to the residual background. Compared to the

open triangle symbols, both the residual background and the signal are ∼20% smaller

than the open triangle symbols.

3.6 Extracting Mass and Width

The K∗(892), a resonance vector meson, has J=1. The Kπ invariant mass distribu-

tion for K∗ should therefore be fit to a p-wave Breit-Wigner function [83]

F (M) =
aMΓM0

(M2 −M2
0 )2 + M2

0 Γ2
(3.4)

in which a is a constant parameter proportional to the yield of K∗, M is the Kπ

invariant mass, M0 is the natural K∗ mass, and

Γ(M) = [
M2 − (Mπ + MK)2

M2
0 − (Mπ + MK)2

]3/2 Γ0M0

M
(3.5)

In Equation 3.5, Γ0 is the K∗ full width, Mπ is the pion natural mass and MK is the

kaon natural mass.

In Au+Au collisions, besides direct production from partons [33], a K∗ can also be

generated through kaon and pion scattering in the hadron medium via K + π →
K∗ → K + π [28]. The Kπ invariant mass distribution for the K∗ generated in this

way might be modified by the initial kaon and pion phase space distribution. Thus

the p-wave Breit-Wigner function should be multiplied by a phase space factor [81]

(Equation 3.6) to fit the Kπ invariant mass distribution. In p+p collisions, although

the hadron medium might be much smaller than the medium in Au+Au collisions, a
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K∗ can also be re-produced through the same process [61].

P (M) =
M√

M2 + p2
T

e−
√

M2+p2
T

T (3.6)

Here pT is the transverse momentum of the K∗ and T is the temperature of the

hadron medium. In this analysis, we use T=160 MeV in p+p collisions according to

a statistical model calculation [82] which reasonably reproduces particle compositions.

We use T=120 MeV in Au+Au collisions, since the observed K∗ is presumably emitted

close to the kinetic freeze-out stage and the hadron medium has already cooled down

compared to the chemical freeze-out stage [81].

In the mixed-event background subtracted Kπ invariant mass spectrum, there is a

certain amount of residual background which can be reasonably represented by a

linear function

B(M) = bM + c (3.7)

in which b and c are two constant parameters.

In the end, we use Equation 3.8 to fit the Kπ invariant mass spectrum

f(M) = F (M)× P (M) + B(M) (3.8)

in which a, b, c, M0 and Γ0 are five open parameters of the fit function. We can then

extract the mass and full width of the K∗ from the fit.

Figure 3.12 shows the Kπ invariant mass spectrum in the mid-rapidity region |y| <

0.5 and with transverse momentum pT < 8.0 GeV/c in top 10% central Au+Au

collisions. Through the fit using Equation 3.8, we get the K∗0 mass M0 = 893.7 ± 1.1

MeV/c2 and full width Γ0 = 56.0 ± 4.3 MeV/c2. Figure 3.13 shows the Kπ invariant

mass spectrum in the mid-rapidity region |y| < 0.5 and with transverse momentum

pT < 1.6 GeV/c in minimum bias triggered p+p collisions. Through the fit using

Equation 3.8, we get the K∗0 mass M0 = 887.2 ± 0.5 MeV/c2 and full width Γ0 =

51.7 ± 2.0 MeV/c2.

In order to get the K∗0 mass and width distributions as a function of K∗0 transverse

momentum, we distribute both the Kπ same-event invariant mass spectra and mixed-

event invariant mass spectra into different transverse momentum bins. Then after
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Figure 3.12: The Kπ invariant mass distribution fit to Equation 3.9 to extract the K∗0

mass and full width in top 10% central Au+Au collisions. The solid curve represents
the fit function in Equation 3.8 and the dashed line represents the linear function in
Equation 3.7. The units for the fit parameters M0 and Γ0 are GeV/c2.
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Figure 3.13: The Kπ invariant mass distribution fit to Equation 3.8 to extract the
K∗0 mass and full width in p+p collisions. The solid curve represents the fit function
in Equation 3.8 and the dashed line represents the linear function in Equation 3.7.
The units for the fit parameters M0 and Γ0 are GeV/c2.
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mixed-event background subtraction in each transverse momentum bin, we fit the

Kπ invariant mass spectra using Equation 3.8 to get K∗0 mass M0 and full width Γ0

in each transverse momentum bin. The results will be shown in Section 4.1

3.7 Extracting Yield

To extract the yield of K∗ signal in certain transverse momentum range, the fit

function in Equation 3.8 is simplified to [84]

f(M) =
a

2π × 100

Γ0

(M −M0)2 + Γ2
0/4

+ bM + c (3.9)

to reduce the statistical uncertainty for the yield after fit. In the above shown sim-

plified Breit-Wigner function, a is the area of the Breit-Wigner distribution corre-

sponding to the yield of the K∗ signal. For the same reason, to reduce the statistical

uncertainties of the fit, we fix the K∗ mass, M0, and full width, Γ0, as the values which

we have obtained from Section 3.6. The systematic difference for K∗ yield between

the methods using the simplified Breit-Wigner function and fixed mass and width

parameters and the method using the fit function of Equation 3.8 will be discussed

in Chapter 4.

Figure 3.14 shows the same Kπ invariant mass spectrum as Figure 3.12 but the spec-

trum is fit to Equation 3.9 to extract the yield. Through the fit, we get the K∗0 raw

yield to be 5.66×106 ± 1.98×105. Figure 3.15 shows the same Kπ invariant mass

spectrum as Figure 3.13. Through the fit using Equation 3.9, we get the K∗0 raw

yield to be 5.64×104 ± 1087. Figure 3.16 shows the K0
Sπ± invariant mass spectrum

in the mid-rapidity region |y| < 0.5 and with transverse momentum pT < 4.0 GeV/c

in minimum bias triggered p+p collisions. Through the fit using Equation 3.9, we get

the K∗± raw yield to be 9480 ± 497. The results of the K∗0 and K∗± raw yields from

different transverse momentum bins in different Au+Au collision centralities and p+p

collisions will be shown in Section 4.2 and 4.3.
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Figure 3.14: The Kπ invariant mass distribution fit to Equation 3.9 to extract the K∗0

yield in top 10% central Au+Au collisions. The solid curve represents the fit function
in Equation 3.9 and the dashed line represents the linear function in Equation 3.7.
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Figure 3.15: The Kπ invariant mass distribution fit to Equation 3.9 to extract the
K∗0 yield in p+p collisions. The solid curve represents the fit function in Equation
3.9 and the dashed line represents the linear function in Equation 3.7.
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Figure 3.16: The K0
Sπ± invariant mass distribution fit to Equation 3.9 to extract the

K∗± yield in p+p collisions. The solid curve represents the fit function in Equation
3.9 and the dashed line represents the linear function in Equation 3.7.
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3.8 Efficiency Correction

Once the K∗0 and K∗± raw yields have been obtained from different transverse mo-

mentum bins in Au+Au and p+p collisions, the raw yields must be corrected for

the total reconstruction efficiencies including detector acceptance, response, tracking

efficiency, and dynamical cut effects.

The simulated K∗0 and K∗± mesons are generated using a flat pT and a flat y dis-

tribution and pass through GSTAR [57] (the framework software package to run the

STAR detector simulation using GEANT [58, 59]) and TRS (the TPC Response Sim-

ulator [57]). The K∗ mesons are then decayed by GEANT via the decay channel

K∗0 → Kπ and K∗± → K0
Sπ±. The simulated K∗ mesons and their decay daughters

are then combined with a real raw event and we call this combined event a simulated

event. This simulated event is then passed through the standard STAR reconstruc-

tion chain and we call this event after reconstruction a reconstructed event. The

reconstructed information of the decay daughters of K∗ mesons in the reconstructed

event is then associated with the Monte-Carlo information in the simulated event.

Two more steps are needed to calculate the total reconstruction efficiencies of K∗ raw

yields: first, we get the total number of simulated K∗0 and K∗± mesons from simu-

lated events in certain momentum bin; second, we find the associated decay daughter

information in the reconstructed events and apply the same dynamical cuts which

have been used in the real data analysis, and count the number of K∗0 and K∗±

which pass these cuts and end up being reconstructed in this momentum bin. In the

end, take ratio of the number obtained in the second step to the number obtained in

the first step and this ratio is the total reconstructed efficiency for a certain transverse

momentum bin in the mid-rapidity range. Efficiencies for different Au+Au collision

centralities can also be calculated by selecting simulated and reconstructed events in

these centralities.

The total reconstruction efficiencies for K∗0 in different Au+Au collision centralities

and p+p collisions, and for K∗± in p+p collisions, are shown in Figure 3.17.
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Figure 3.17: The total reconstruction efficiencies as a function of transverse momen-
tum for K∗0 in 0%-10%, 10%-30%, 30%-50% and 50%-80% Au+Au centralities and
p+p collisions and K∗± in p+p collisions.
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3.9 Elliptic Flow Analysis

Elliptic flow v2 and the reaction plane in Au+Au collisions have been defined in

Section 1.1.6. In order to calculate the K∗ elliptic flow v2, we need to first estimate

the reaction plane for each Au+Au collision event. The estimated reaction plane we

call the event plane. Then we have two methods to calculate the K∗ v2: (1) According

to Equation 1.7, we distribute the K∗ yield as a function of φ − Ψr and fit with a

simplified function of Equation 3.10 since v1, v3, v4 and all higher components are

close to zero and can be ignored.

N(φ−Ψr) = N0(1 + 2v2 cos[2(φ−Ψr)]) (3.10)

in which φ is the azimuthal angle of K∗ in the momentum space; (2) According the

definition of the second harmonic coefficient v2 in Equation 1.7, we can get

v2 =< cos[2(φ−Ψr)] > (3.11)

in which <> indicates an average over all K∗ in all events.

Method (1) gives us larger statistical uncertainties through the fit function, so we use

method (2) to calculate the K∗ elliptic flow in this analysis.

3.9.1 Estimation of Reaction Plane

The event plane can be independently determined for each harmonic of the anisotropic

flow. For the second harmonic, the event plane angle Ψ2 is defined by the equation

Ψ2 =
1

2
tan−1

∑
i ωi sin(2φi)∑
i ωi cos(2φi)

(3.12)

The sums go over all the primary tracks used in the event plane determination, φi is

the azimuthal angle in momentum space for the i-th primary track and the ωi are the

track weights [10, 52, 60]. Since the reaction plane is estimated by using a limited

number of tracks, we will need to consider the limited resolution for determining

the event plane. The track weights ωi are used here to optimize the reaction plane

resolution. In general the track weight ω is a combination of track azimuthal angle
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(φ) weight ωφ and transverse momentum (pT ) weight ωpT

ω = ωφ × ωpT
(3.13)

Considering the configuration of the TPC detector, because there are boundaries

between sectors and different sectors are not identical in the azimuthal direction, the

track reconstruction efficiency is not uniform as a function of azimuthal angle φ so

that we need to correct each track used for reaction plane estimation by a track φ

weight [52, 60]. In order to calculate ωφ, tracks from all events are distributed in a

function of φ, then we calculate

ωφ =
< N(φ) >

N(φ)
(3.14)

N(φ) is the count in an azimuthal angle bin with its bin center at φ and < N(φ) >

is the average of N(φ) over all bins of φ.

The flow anisotropy increases with pT and saturates when pT > 2 GeV/c [12]. Thus
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Figure 3.18: The estimated reaction plane distribution fit with a constant function
in minimum bias triggered Au+Au collisions.

to optimize our determination of the reaction plane, tracks with different pT need to
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be corrected for different pT weights when estimating the reaction plane [52, 60]

ωpT
=





pT /2 if pT < 2 GeV/c,

1 if pT ≥ 2 GeV/c.
(3.15)

Figure 3.18 shows the estimated reaction plane distribution in minimum bias triggered

Au+Au collisions. The distribution is fit to a constant function, which fits quite well

as we expect that it should.

3.9.2 Avoiding Auto Correlations

In general, if one track has already been used in the estimation of reaction plane, it

should not be used again as a candidate kaon or pion track in calculating the Kπ

pair azimuthal angle with respect to the event plane angle. Otherwise, there is auto

correlation between the pair azimuthal angle and the event plane angle [10, 52]. We

must avoid this auto correlation in order to correctly measure the K∗ elliptic flow.

Using the event-mixing technique, we select a large amount of the primary tracks as

kaon or pion candidates in reconstructing the K∗ signal so that we cannot only use

the remaining small number of primary tracks to estimate the reaction plane angle,

otherwise we will have unacceptable resolution for the reaction plane. Therefore we

use the following method to avoid the auto correlation.

For each Kπ pair, we calculate the event plane angle by using all the other primary

tracks except these kaon and pion candidate tracks. Equation 3.12 becomes

Ψ′
2 =

1

2
tan−1

∑
i ωi sin(2φi)− ωK sin(2φK)− ωπ sin(2φπ)∑
i ωi cos(2φi)− ωK cos(2φK)− ωπ cos(2φπ)

(3.16)

The subscripts K and π stand for the kaon candidate track and pion candidate track,

respectively. With this method, we avoided the auto correlation between the Kπ

azimuthal angle φKπ and the event plane angle Ψ′
2.

3.9.3 K∗ Elliptic Flow

Using the event-mixing technique, the K∗0 signal is reconstructed in each cos[2(φKπ−
Ψ′

2)] bin. Figure 3.19 shows the K∗0 yield as a function of cos[2(φKπ−Ψ′
2)] in minimum
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bias triggered Au+Au collisions. After calculating the average of < cos[2(φKπ −
Ψ′

2)] >, we get the K∗0 elliptic flow, v2 = 0.074 ± 0.040.
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Figure 3.19: K∗0 yield as a function of cos[2(φKπ − Ψ′
2)] in minimum bias triggered

Au+Au collisions.

3.9.4 Reaction Plane Resolution Correction

Since we use a limited number of tracks in each event to estimate the reaction plane,

we will have a non-zero resolution for the reaction plane angle. This non-zero resolu-

tion makes the observed K∗ elliptic flow v2 always smaller than the true v2. To get

rid of this effect, we need to divide the observed v2 by the reaction plane resolution

v2 = vobs
2 / < cos[2(Ψ2 −Ψr)] > (3.17)

We use Equation 3.18 to calculate the reaction plane resolution [10]

< cos[2k(Ψ2 −Ψr)] >=

√
π

2
√

2
χ2e

−χ2
2/4[I(k−1)/2(χ

2
2/4) + I(k+1)/2(χ

2
2/4)] (3.18)
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In the above equation, k=1, χ2 = v2

√
2N (N is the number of tracks used to estimate

the reaction plane) and Iν is the modified Bessel function of order ν.

There is another more simple way to calculate the reaction plane resolution with some

approximations. First we randomly divide one event into two sub-events a and b and

calculate the event planes Ψa
2 and Ψb

2 from these two sub-events [10]. Then

< cos[2(Ψa
2 −Ψb

2)] >=< cos[2(Ψa
2 −Ψr)] > × < cos[2(Ψb

2 −Ψr)] > (3.19)

If the two sub-events have equal multiplicity, we have

< cos[2(Ψa
2 −Ψr)] >=

√
< cos[2(Ψa

2 −Ψb
2)] > (3.20)

We then assume the number (N) of tracks used in the full event reaction plane esti-

mation is twice as large as the number of tracks in each sub-event and the resolution

is proportional to
√

N , then the resolution is

< cos[2(Ψ2 −Ψr)] >=
√

2 < cos[2(Ψa
2 −Ψr)] > (3.21)

The reaction plane resolution calculated using Equation 3.18 for minimum bias trig-

gered Au+Au collisions is 0.76 ± 0.01. Then we use this resolution to correct the

K∗0 observed v2 in Section 3.9.4 and get v2 = 0.097 ± 0.053. Results for the K∗0 v2

as a function of pT and as a function of collision centrality will be shown in Section

4.7.



Chapter 4

Results

4.1 Mass and Width Distribution

In strongly interacting matter at high temperature and high densities, dynamical

interactions of the K∗ resonance with the surrounding matter may cause the mod-

ification of the K∗ mass, width and even the mass line shape due to the so-called

in-medium effect. In the hadron gas, kaon and pion particles can re-generate K∗

signals through Kπ → K∗ → Kπ so that the K∗ resonance mass line shape might

be affected by the kaon and pion initial phase space distributions. This re-generation

channel can also interfere with the kaon and pion elastic scattering channel through

Kπ → Kπ. This interference may also modify the K∗ properties [61]. Even though

the size of the system formed in p+p collisions is smaller than in Au+Au collisions,

interactions that may modify the K∗ resonance are also expected [61]. Thus a mea-

surement of the K∗(892) mass, width and line shape in Au+Au an p+p collisions can

provide very interesting information on possible in-medium effects.

The K∗0(892) mass and width in each pT bin at mid-rapidity (|y| < 0.5) are measured

using the method described in Section 3.6 in minimum bias triggered p+p collisions

and top 10% central triggered Au+Au collisions at
√

sNN=200 GeV. As shown in

Equation 3.9, the mixed-event background subtracted Kπ invariant mass distribu-

tion in each pT bin is fit to a p-wave Breit-Wigner function multiplied by a phase

space factor plus a linear function representing the residual background.

67
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Figure 4.1: Kπ invariant mass distributions from eight pT bins fit to Equation 3.8
to extract the mass and width in minimum bias triggered p+p collisions. The solid
curves stand for the fit function in Equation 3.8 and the dashed lines stand for the
linear function in Equation 3.7. The units for the fit parameters M0 and Γ0 are
GeV/c2.
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Figure 4.2: Kπ invariant mass distributions from seven pT bins fit to Equation 3.8 to
extract the mass and width in top 10% central Au+Au collisions. The solid curves
stand for the fit function in Equation 3.8 and the dashed lines stand for the linear
function in Equation 3.7. The units for the fit parameters M0 and Γ0 are GeV/c2.
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Figure 4.1 shows the Kπ invariant mass distribution in eight pT bins (with each pT

bin width 0.2 GeV/c) in the pT range between 0.0 and 1.6 GeV/c in p+p collisions.

Figure 4.2 shows the Kπ invariant mass distribution from seven pT bins with bin

width 0.4 GeV/c in the pT range between 0.4 and 3.2 GeV/c in central Au+Au colli-

sions. The fit range of the Kπ invariant mass for most pT bins is 0.78 to 1.05 GeV/c2.

In some pT bins, the range has been slightly changed in order to get a better fit. In

central Au+Au collisions, we use a second order polynomial function to describe the

residual background in the two pT bins of 0.8-1.2 GeV/c and 1.2-1.6 GeV/c to best

represent the shape of the residual background.

p+p Au+Au
pT Mass±Stat±Sys Width±Stat±Sys pT Mass±Stat Width±Stat

0.0-0.2 885.5±2.2±5.4 59.1±7.3±25 0.4-0.8 885.4±4.6 64.2±26
0.2-0.4 885.7±1.7±5.8 57.9±5.5±6 0.8-1.2 890.8±0.6 46.7±6.4
0.4-0.6 886.0±1.2±6.2 51.3±4.5±5 1.2-1.6 892.5±0.5 41.8±18
0.6-0.8 886.1±1.1±5.6 49.8±4.6±6 1.6-2.0 894.2±2.0 43.8±4.4
0.8-1.0 888.4±1.3±3.4 53.9±5.2±11 2.0-2.4 897.2±0.6 56.0±1.0
1.0-1.2 891.0±1.3±4.4 39.6±4.7±5 2.4-2.8 897.4±5.9 58.0±1.6
1.2-1.4 891.5±1.5±4.0 32.9±5.8±14 2.8-3.2 899.0±3.6 68.0±19
1.4-1.6 896.5±2.9±3.7 40.8±7.1±8

Table 4.1: The K∗0 mass and width for each pT bin in minimum bias triggered p+p
collisions and top 10% central triggered Au+Au collisions. The unit for pT is GeV/c
and the units for mass and width are MeV/c2. Mass and width values in p+p collisions
are listed together with statistical uncertainties and systematic uncertainties. Mass
and width values in Au+Au collisions are listed with statistical uncertainties only.

The K∗0(892) natural mass and width parameters in each pT bin have been obtained

through these fits in p+p and central Au+Au collisions and results are listed in Table

4.1. Detailed studies of systematic uncertainties in these quantities will be addressed

for p+p collisions in Chapter 5. Due to limited statistics, we are unable to perform

studies on systematic uncertainties for K∗0 mass and width parameters in central

Au+Au collisions. We expect that the RHIC run in 2004 for Au+Au collisions at
√

sNN=200 GeV will provide enough statistics to precisely measure the K∗0 mass in

Au+Au collisions as a function of pT and allow detailed study of systematic uncer-

tainties.
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The K∗0 mass in p+p collisions (filled circle symbols) and central Au+Au collisions

(star symbols) as a function of K∗0 transverse momentum pT are shown in Figure 4.3,

in which the grey shadows represent the systematic uncertainties for the K∗0 mass

in p+p collisions and the solid straight line stands for the standard K∗0 mass from

the Particle Data Book [15] (896.1 MeV/c2). The measured mass in each pT bin is

then compared to the mass from the Monte Carlo (MC) simulations which account

for detector effects and all kinematic cuts in p+p collisions (dot-dashed curve) and

central Au+Au collisions (dashed curve), respectively.
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Figure 4.3: K∗0 mass as a function of transverse momentum in p+p and top 10%
central Au+Au collisions. The solid straight line stands for the standard K∗0 mass
(896.1 MeV/c2). The dot-dashed (dashed) curve represents the MC results for K∗0

mass in p+p (top 10% central Au+Au) collisions after considering detector effects
and kinematic cuts. The grey shadows are for systematic uncertainties in p+p.

In this figure, we can see that the K∗0 masses in both p+p and central Au+Au col-

lisions increases as a function of pT . In p+p collisions, the K∗0 masses at low pT

(pT <1.4 GeV/c) are significantly smaller than the MC results. The K∗0 masses at

pT <1.6 GeV/c in top 10% central Au+Au collisions are also smaller than the MC

results. Thus we observe a mass shift toward smaller mass at low pT in both p+p and
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central Au+Au collisions and this mass shift decreases in magnitude as a function of

K∗0 transverse momentum.
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Figure 4.4: K∗0 width as a function of transverse momentum in p+p and top 10%
central Au+Au collisions. The solid straight line stands for the standard K∗0 width
(50.7 MeV/c2). The dot-dashed (dashed) curve represents the MC results for K∗0

width in p+p (top 10% central Au+Au) collisions after considering detector effects
and kinematic cuts. The grey shadows represent systematic uncertainties in p+p.

Figure 4.4 shows the K∗0 width as a function of pT in p+p collisions (filled circle

symbols) with systematic uncertainties (grey shadows) and central Au+Au collisions

(star symbols). The straight line stands for the standard K∗0 width from the Particle

Data Book [15] which is 50.7 MeV/c2. The measured K∗0 width parameters are also

compared to the MC results in p+p collisions (dot-dashed curve) and top 10% cen-

tral Au+Au collisions (dashed curve), respectively. In this figure, we cannot see any

significant difference between the measured K∗0 width and the MC results in both

p+p and Au+Au collisions. Thus no K∗0 width broadening effect can be observed in

either p+p or central Au+Au collisions.
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4.2 Transverse Mass Spectra in Au+Au and p+p

Collisions

The K∗0 raw yields in each pT bin at mid-rapidity (|y| < 0.5) are measured using

the method described in Section 3.7 in top 10% central Au+Au, as well as in four

different centralities (0-10%, 10%-30%, 30%-50% and 50%-80%) in minimum bias

triggered Au+Au and minimum bias triggered p+p collisions at
√

sNN=200 GeV.

Figure 4.5 shows the Kπ invariant mass distributions from seven pT bins with bin

width 0.4 GeV/c in the pT range between 0.4 and 3.2 GeV/c in central Au+Au colli-

sions. The Kπ invariant mass distributions from each pT bin in the four centralities

in minimum bias triggered Au+Au collisions have shapes similar to the distributions

in central Au+Au collisions. Figure 4.6 shows the Kπ invariant mass distributions

from eight pT bins with bin width 0.2 GeV/c in the pT range between 0.0 and 1.6

GeV/c in p+p collisions.

Using the fit with the simplified Breit-Wigner function together with a linear function

(second order polynomial function for two pT bins in Au+Au collisions) represent-

ing the residual background as shown in Equation 3.10, the K∗0 + K∗0 raw yields

are extracted for each pT bin. Figure 4.7 shows the (K∗0 + K∗0)/2 raw invariant

yields 1/(2π)d2Nraw/pT dpT dy normalized by the total number of collision events at

mid-rapidity |y| < 0.5 as a function of pT in top 10% central triggered Au+Au, four

centralities 0-10%, 10%-30%, 30%-50% and 50%-80% in minimum bias Au+Au and

minimum bias p+p collisions. The data points for the top 10% central triggered

Au+Au collisions are scaled by a factor of 2 in order to more easily show any differ-

ence of the 0-10% centrality bin in minimum bias Au+Au collisions.

The raw invariant yields in each pT bin are then corrected for the total reconstruction

efficiencies (as shown in Section 3.8) and the decay branching ratios. From the Par-

ticle Data Book [15], we find that ∼100% of the K∗0 mesons decay into the two Kπ

channels: (1) the decay channel into two oppositely charged daughters K∗0 → K+π−

and (2) the decay channel into two neutral daughters K∗0 → K0π0. Isospin calcu-

lations (Appendix B) show that 2/3 of the K∗0 mesons decay into the channel with

oppositely charged daughters and 1/3 decay into the channel with neutral daughters.
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Figure 4.5: The Kπ invariant mass distributions from seven pT bins fit to Equation
3.9 to extract yield in top 10% central Au+Au collisions. The solid curves stand for
the fit function in Equation 3.9 and the dashed lines stand for the linear function in
Equation 3.7.



75

)
2

 Inv. Mass (GeV/cπK

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

-200

-100

0

100

200

300

400

500  / ndf 2χ  26.42 / 24
a         253.6±  4431 

b         85.65± 39.68 
c         74.18± -80.9 

<0.2GeV/cT0.0<p

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

-200

0

200

400

600

800

1000

1200  / ndf 2χ     29 / 24
a         406.7±  9330 

b         159.9± 197.4 
c           143± -226.6 

<0.4GeV/cT0.2<p

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
-400

-200

0

200

400

600

800

1000

1200

1400  / ndf 2χ  21.35 / 24

a           506± 1.14e+004 

b         209.9± -561.4 

c         197.6± 451.2 

<0.4GeV/cT0.2<p

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

-200

0

200

400

600

800

1000

1200

1400

1600  / ndf 2χ  17.54 / 24

a         543.2± 1.241e+004 

b         227.4± -272.8 

c         221.3± 184.5 

<0.8GeV/cT0.6<p

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
-200

0

200

400

600

800

1000

1200
 / ndf 2χ  29.35 / 24

a         446.8±  9577 

b         188.2±  -206 
c         183.1± 141.3 

<1.0GeV/cT0.8<p

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

0

200

400

600

800
 / ndf 2χ  14.81 / 19

a         337.6±  5690 

b         178.1± -1137 
c         162.3±  1029 

<1.2GeV/cT1.0<p

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

0

100

200

300

400

500
 / ndf 2χ  20.66 / 19

a         239.9±  2934 

b         123.2± -970.2 

c         110.3±   916 

<1.4GeV/cT1.2<p

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
-100

-50

0

50

100

150

200

250
 / ndf 2χ  25.71 / 24

a         150.2±  1369 

b          57.6± -284.5 
c         52.61± 294.1 

<1.6GeV/cT1.4<p

Figure 4.6: The Kπ invariant mass distributions from eight pT bins fit to Equation
3.9 to extract yield in p+p collisions. The solid curves stand for the fit function in
Equation 3.9 and the dashed lines stand for the linear function in Equation 3.7.
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rapidity (|y| < 0.5) in p+p collisions and Au+Au collisions with different centralities.
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Thus the K∗0 yields have to be corrected by the branching ratio 2/3 since we mea-

sured the K∗0 through the channel with two oppositely charged daughters.

The K∗0 transverse mass mT is defined as

mT =
√

m2
0 + p2

T (4.1)

in which m0 is the K∗0 natural mass 896.1 MeV/c2 and pT is the transverse momen-

tum. We can see that

pT dpT =

√
m2

0 + p2
T

2
√

m2
0 + p2

T

dp2
T = mT dmT (4.2)

The total reconstruction efficiency and decay branching ratio corrected (K∗0+K∗0)/2

invariant yield at mid-rapidity is then

1

2πpT

d2N

dydpT

=
1

2πmT

d2N

dydmT

(4.3)

Table 4.2 lists the (K∗0 + K∗0)/2 invariant yields [1/(2πmT )][d2N/dydmT ] at mid-

rapidity in each mT −m0 bin in central Au+Au and p+p collisions. Table 4.3 lists

mT −m0

(MeV/c2)
top 10% central
triggered Au+Au

mT −m0

(MeV/c2)
minimum bias
triggered p+p

0.182 1.21±0.19 0.006 (4.09±0.65)×10−2

0.447 1.14±0.10 0.049 (3.09±0.35)×10−2

0.766 (5.24±0.41)×10−1 0.130 (2.26±0.22)×10−2

1.115 (2.36±0.17)×10−1 0.241 (1.21±0.10)×10−2

1.479 (1.05±0.08)×10−1 0.374 (6.70±0.57)×10−3

1.854 (3.07±0.38)×10−2 0.523 (3.68±0.39)×10−3

2.235 (1.24±0.19)×10−2 0.683 (1.77±0.22)×10−3

0.851 (9.90±0.17)×10−4

Table 4.2: The (K∗0 + K∗0)/2 invariant yields [1/(2πmT )][d2N/dydmT ] at mid-
rapidity in each mT − m0 bin in top 10% central Au+Au and minimum bias p+p
collisions.

the (K∗0 + K∗0)/2 invariant yields at mid-rapidity in each mT − m0 bin in 0-10%,

10%-30%, 30%-50% and 50%-80% centralities in minimum bias Au+Au collisions.

The mT for each mT −m0 bin is calculated from Equation 4.1 using the bin center
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mT −m0

(MeV/c2)
minimum bias triggered Au+Au

0-10% 10%-30% 30%-50% 50%-80%
0.182 1.66±0.57 1.01±0.25 (4.37±1.04)×10−1 (1.43±0.25)×10−1

0.447 1.23±0.30 (7.30±1.10)×10−1 (3.52±0.49)×10−1 (8.69±1.10)×10−2

0.766 (5.08±1.23)×10−1 (2.01±0.48)×10−1 (1.05±0.23)×10−1 (3.54±0.50)×10−2

1.115 (1.71±0.51)×10−1 (1.29±0.20)×10−1 (5.48±0.76)×10−2 (1.69±0.20)×10−2

1.479 (1.25±0.28)×10−1 (6.11±0.88)×10−2 (2.94±0.37)×10−2 (6.21±0.83)×10−3

1.854 (3.70±1.23)×10−2 (2.23±0.43)×10−2 (9.91±1.68)×10−3 (2.47±0.41)×10−3

2.235 (1.43±0.55)×10−2 (1.13±0.22)×10−2 (3.89±0.83)×10−3 (8.70±2.00)×10−4

Table 4.3: The (K∗0 + K∗0)/2 invariant yields [1/(2πmT )][d2N/dydmT ] at mid-
rapidity in each mT −m0 bin in 0-10%, 10%-30%, 30%-50% and 50%-80% centralities
in minimum bias Au+Au collisions.

of each corresponding pT bin.

Figure 4.8 shows the transverse mass distributions of the (K∗0 + K∗0)/2 invariant

yields at mid-rapidity (|y| <0.5) in central Au+Au, four centralities (0-10%, 10%-

30%, 30%-50% and 50%-80%) in minimum bias Au+Au, and p+p collisions. The

distributions show an exponentially decreasing behavior with mT and we would like

to use an exponential function to fit the distributions to extract the K∗0 mid-rapidity

yield dN/dy and the inverse slope parameter T . Thus we define an exponential

function in Equation 4.4

1

2πmT

d2N

dydmT

= a× e−(mT−m0)/b (4.4)

It’s obvious that the parameter b in the above equation is the inverse slope parameter

T . In order to get dN/dy, we integrate both sides of Equation 4.4 with respect to

transverse mass and get

∫ +∞

m0

1

2πmT

d2N

dydmT

mT dmT =
1

2π

dN

dy
(4.5)

∫ +∞

m0

a× e−(mT−m0)/T mT dmT = aT (m0 + T ) (4.6)

So we have

a =
dN/dy

2πT (m0 + T )
(4.7)
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Then we can use the exponential function shown in the right side of Equation 4.8 to

fit the K∗0 transverse mass distributions in Figure 4.8

1

2πmT

d2N

dydmT

=
dN/dy

2πT (m0 + T )
e−(mT−m0)/T (4.8)

The two open parameters in the above fit function are the K∗0 mid-rapidity yield

dN/dy and the inverse slope parameter T .

Through the exponential fit, we extract the K∗0 yield dN/dy at mid-rapidity |y| < 0.5

and the inverse slope parameter T in central Au+Au, minimum bias Au+Au and p+p

collisions and results are listed in Table 4.4. The mid-rapidity yield dN/dy and the

dN/dy T (MeV)
top 10% central 10.18±0.46±1.58 427.0±9.7±46.4

0-10% 10.48±1.45±1.63 428.1±30.9±46.5
10%-30% 5.86±0.56±0.91 446.2±22.5±48.5
30%-50% 2.81±0.25±0.44 427.0±18.2±46.4
50%-80% 0.815±0.059±0.127 401.8±14.4±43.6

p+p (5.93±0.23±0.39)×10−2 223.4±9.1±9.1

Table 4.4: The K∗0 mid-rapidity yield dN/dy and the inver slope parameter T in top
10% central Au+Au, four centralities 0-10%, 10%-30%, 30%-50% and 50%-80% in
minimum bias Au+Au and minimum bias p+p collisions.

inverse slope parameter T in Table 4.4 are listed as “values ± statistical uncertainties

± systematic uncertainties”. Detailed studies concerning systematic uncertainties are

discussed in Chapter 5.

In Table 4.4, we can see that the K∗0 mid-rapidity yield dN/dy is increasing from p+p

collisions to peripheral Au+Au collisions to central Au+Au collisions. The inverse

slope parameters, T , in Au+Au collisions are significantly larger than in p+p colli-

sions. It is consistent with the UrQMD model predictions [28] that the K∗ daughter

particles’ re-scattering effect is pT dependent. Although with larger statistical uncer-

tainties, the dN/dy and T values extracted in the 0-10% centrality bin in minimum

bias Au+Au collisions match the results in top 10% central Au+Au collisions within

uncertainties.
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Figure 4.8: The (K∗0 + K∗0)/2 efficiency corrected invariant yields as functions of
mT − m0 at mid-rapidity (|y| < 0.5). This is fit to Equation 4.8 to extract dN/dy
and the inverse slope parameters in p+p and Au+Au collisions. The dashed lines
represent the fit function in Equation 4.8.
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4.3 Transverse Momentum Spectrum in p+p Col-

lisions

In p+p collisions, theoretical calculations indicate that particle production is domi-

nated by hard processes, such as gluon fusion, mini-jets, etc., at moderate pT (∼1.5

< pT < 4 GeV/c) while soft processes dominate at low pT (pT < 1.5GeV/c) [62]. Thus

we expect to observe a power-law shape in the pT distribution at pT > 1.5 GeV/c of

the K∗ invariant yield 1/(2πpT )d2N/dydpT at mid-rapidity because hard processes

give a power-law shape.

In p+p collisions, due to the fact that we cut on the kaon daughter momentum p <

0.7 GeV/c, we only measure the K∗0 spectrum for pT < 1.6 GeV/c. In this range,

the soft processes dominate, so that the simple exponential function can fit the K∗0

transverse mass spectrum well. Fortunately, we can measure the K∗± signals with pT

up to 4.0 GeV/c so that we can test whether the overall K∗ transverse momentum

can be well fit by a power-law function or not.

Figure 4.9 shows the K0
Sπ± invariant mass distributions for six pT bins in the pT

range between 0.6 and 4.0 GeV/c in p+p collisions. The invariant mass distribution

for each pT bin is fit with a simplified Breit-Wigner function plus a linear function

representing the residual background, as shown in Equation 3.10, to extract the K∗±

yields in each pT bin. In Equation 3.10, we fix the K∗± mass (M0= 891.7 MeV/c2) and

the full width (Γ0= 50.8 MeV/c2) according to the Particle Data Book. Figure 4.10

shows the (K∗+ + K∗−)/2 together with the (K∗0 + K∗0)/2 raw yield, d2Nraw/dydpT ,

as a function of pT in p+p collisions.

The raw yields for K∗± in each pT bin are then corrected for the total reconstruction

efficiencies and the decay branching ratios. In the case of K∗+, ∼100% of the K∗+

meson decays into the two following Kπ channels: (1) the decay channel with a neu-

tral kaon K∗+ → K0π+ and (2) the decay channel with a neutral pion K∗+ → K+π0.

Isospin calculations (Appendix B) show that 2/3 of the K∗+ mesons decay into the

neutral kaon channel and 1/3 decay into the neutral pion channel. Since we measure

the K∗+ signal by selecting the K0
S candidates via K0

S → π+π−, we also have to

consider that only half of the K0 mesons decay as a K0
S and the other half decay
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Figure 4.9: The K0
Sπ± invariant mass distributions from six pT bins fit to Equation

3.9 to extract yield in p+p collisions. The solid curves stand for the fit function in
Equation 3.9 and the dashed lines stand for the linear function in Equation 3.7.
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Figure 4.10: The (K∗0 + K∗0)/2 and (K∗+ + K∗0−)/2 raw yield d2Nraw/pT dpT dy as
functions of pT at mid-rapidity (|y| < 0.5) in p+p collisions.

pT (GeV/c) (K∗+ + K∗−)/2 pT (GeV/c) (K∗0 + K∗0)/2
0.6-1.0 (6.88±1.04)×10−3 0.0-0.2 (4.09±0.65)×10−2

1.0-1.5 (2.97±0.28)×10−3 0.2-0.4 (3.09±0.35)×10−2

1.5-2.0 (8.81±0.81)×10−4 0.4-0.6 (2.26±0.22)×10−2

2.0-2.5 (2.52±0.39)×10−4 0.6-0.8 (1.21±0.10)×10−2

2.5-3.0 (8.15±1.57)×10−5 0.8-1.0 (6.70±0.57)×10−3

3.0-4.0 (1.75±0.33)×10−5 1.0-1.2 (3.68±0.39)×10−3

1.2-1.4 (1.77±0.22)×10−3

1.4-1.6 (9.90±0.17)×10−4

Table 4.5: The (K∗++K∗−)/2 and (K∗0+K∗0)/2 invariant yields 1/(2πpT )d2N/dydpT

at mid-rapidity in each pT bin in minimum bias p+p collisions.
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as a K0
L which we do not observe. The branching ratio for K0

S → π+π− is 68.61%

according to the Particle Data Book [15]. The total decay branching ratio is then

2/3×1/2×68.61%=22.87%. Similar calculations also lead to a total decay branching

ratio 22.87% in the case of K∗−.
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Figure 4.11: The invariant yields for both (K∗0 + K∗0)/2 and (K∗+ + K∗−)/2 as a
function of pT at mid-rapidity (|y| < 0.5), fit to Equation 4.9 to extract 〈pT 〉 in p+p
collisions.

The invariant yields, [1/(2πpT )][d2N/dydpT ] at mid-rapidity in each pT bin in p+p

collisions are listed in Table 4.5 and are shown in Figure 4.11 for both (K∗+ +K∗−)/2

and (K∗0 + K∗0)/2. The K∗ overall spectrum in the range pT >0.5 GeV/c is then fit

with a power-law function defined in the right side of Equation 4.9

1

2πpT

d2N

dydpT

= a(1 +
pT

〈pT 〉n−3
2

)−n (4.9)

in which the parameter a is a constant value proportional to the mid-rapidity yield,

the parameter n is the order of the power law and 〈pT 〉 is the mean value of the

transverse momentum which is extracted from the fit.

The first two data points for (K∗0+K∗0)/2 in the pT bins of 0.0-0.2 GeV/c and 0.2-0.4
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GeV/c cannot be well fit by the power-law function due to the reason that in the very

low pT region particle production is dominated by soft processes while the power-law

function is to describe hard processes. We don’t calculate the K∗ mid-rapidity yield,

dN/dy, using the extracted parameter a because the yield is mainly determined by

the low pT part for which this fit does not work well.

In Figure 4.11, we can see that the K∗ transverse momentum spectrum is well fit

by the power-law function in the range pT > 0.5 GeV/c indicating that the hard

processes are the dominant processes at the intermediate pT region for K∗ production

in p+p collisions. The mean transverse momentum extracted from the power-law fit

is 695.5±21.6 MeV/c.

4.4 Particle Ratios

The quark contents of the K∗(892) resonances are ds (K∗0), ds (K∗0), us (K∗+)

and us (K∗−), while the quark contents for the ground state K mesons are ds (K0),

ds (K0), us (K+) and us (K−). Thus the K∗ resonance and the stable K meson

with the same charge have identical quark content. The K∗ resonance is a vector

meson with total spin S=1 while the stable K is a pseudo-scalar meson with total

spin S=0. Since the pseudo-scalar and vector mesons differ only in the relative

orientation of the quark spins, the difference in their masses must be attributed to

spin-related interactions. Thus the masses of the pseudo-scalar and vector mesons

can be approximately calculated by the following meson mass formula [63]

M(meson) = m1 + m2 + A
( ~S1 · ~S2)

m1m2

(4.10)

in which A is a fit parameter, m and ~S represent the mass and the spin of a quark,

the subscripts 1 and 2 stand for the two quarks in the meson. The spin-related term

is

~S1 · ~S2 =





1/4h̄2 for vector mesons,

−3/4h̄2 for pseudo-scalar mesons.
(4.11)

In the case of the K∗ resonance and the stable K meson, by selecting mu = md =

310 MeV/c2 and ms = 483 MeV/c2, we obtain MK∗ = 896 MeV/c2 and MK = 484
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MeV/c2 whereas the observed meson masses are MK∗0 = 896.1 MeV/c2 and MK0
S

=

497.7 MeV/c2. Thus by measuring the K∗/K ratio in relativistic heavy ion collisions,

we can probe the spin-related interactions under extreme conditions.

As discussed in Section 1.2.3, due to the resonance daughter particles’ re-scattering

effects and resonance re-generation effects in the hadron gas medium, the measure-

ments of resonance yields compared to their corresponding stable particles, such as

K∗/K, ρ/π, ∆/p, etc, can give us information on the fireball evolution between chem-

ical and kinetic freeze-out in relativistic heavy ion collisions.

The K∗ and φ mesons have a very small mass difference and their total spin difference

is ∆S =0. The quark content for the φ meson is ss. Thus the φ/K∗ ratio might be a

good signature to study the strangeness enhancement effect in relativistic heavy ion

collisions [55].

The kaon [64] and φ [65] production in Au+Au and p+p collisions at
√

sNN=200 GeV

have also been measured using the STAR detector at RHIC. Thus the K∗/K and

φ/K∗ particle ratios can be calculated for different centralities in Au+Au collisions

and in p+p collisions. The results are listed in Table 4.6. In the ratio calculations,

we use the (K∗0 + K∗0)/2 mid-rapidity yields dN/dy as the K∗ yields and use the

(K+ + K−)/2 mid-rapidity yields dN/dy as the K yields. The φ meson mid-rapidity

yields dN/dy are used as the φ yields. The uncertainties shown in the table are the

square root of the quadratic sum of the corresponding statistical and systematic un-

certainties. The K∗ yields in 0-10% centrality are the results in top 10% central

K∗/K φ/K∗

0-10% 0.2046±0.0333 0.5953±0.1231
10%-30% 0.2195±0.0401 0.6331±0.1384
30%-50% 0.2550±0.0458 0.5836±0.1313
50%-80% 0.2690±0.0464 0.5276±0.1058

p+p 0.3889±0.0286 0.4553±0.0629

Table 4.6: The K∗/K and φ/K∗ ratios for different centralities in Au+Au collisions
and in p+p collisions.

Au+Au collisions.

Figure 4.12 shows the K∗/K, φ/K∗, ρ/π [66] and ∆/p [67] ratios as a function of
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Figure 4.12: The K∗0/K, φ/K∗0, ρ/π and ∆/p ratios as a function of number of
charged hadrons in p+p (open symbols) and Au+Au (solid symbols) collisions.

number of charged hadrons in Au+Au and p+p collisions. In this figure, we can see

that the K∗/K ratios in Au+Au collisions are about a factor of 2 smaller than the

ratio in p+p collisions. This K∗/K ratio suppression in Au+Au collisions might be

due to the fact that the K∗ daughter particles’ re-scattering effect destroys part of

the K∗ signal. Detailed discussions about this issue will be addressed in Section 6.2.

In Au+Au collisions, although the K∗/K ratio slightly decreases as a function of

number of charged hadrons, the decrease is not significant due to the uncertainties of

the data points. The ρ/π and ∆/p ratios are also shown in this figure for comparison

and their physics implications will be discusses in Chapter 6.

Figure 4.13 and Figure 4.14 show the K∗/K and φ/K∗ ratios in different collision

systems at various collision energies [68, 69, 70, 71, 72, 73, 74, 75, 76], respectively.

The K∗/K and φ/K∗ ratios at
√

sNN = 200 GeV are the ratios in top 10% central

Au+Au collisions and the ratios at
√

sNN= 130 GeV [55] are in the top 14% central

Au+Au collisions. In Figure 4.13, we can see that the K∗/K ratios in elementary

collisions are flat as a function of
√

s considering uncertainties, whereas the K∗/K
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ratio in Au+Au collisions at
√

sNN = 200GeV is significantly smaller than the ratios

in elementary collisions. In Figure 4.14, we can see that the φ/K∗ ratio increases as

a function of collision energy.

4.5 〈pT 〉 Distribution

In the hadron phase between chemical and kinetic freeze-out, the resonances with

higher pT have a greater chance to escape the hadron medium, decay outside the

fireball and avoid the daughter particles’ re-scattering effects so that high pT reso-

nances have a greater chance to be detected than low pT resonances [28]. Thus we

expect to measure a higher 〈pT 〉 distribution in relativistic heavy ion collisions than

in elementary collisions, such as p+p collisions.

Since we have measured the K∗ exponentially decreasing transverse mass spectra and

the inverse slope parameters T in different centralities in Au+Au collisions and in

p+p collisions, in order to calculate the K∗ mean transverse momentum 〈pT 〉, we can

use

〈pT 〉 =

∫ ∞

0

pT
1

2πpT

d2N

dydpT

pT dpT /

∫ ∞

0

1

2πpT

d2N

dydpT

pT dpT (4.12)

Then

〈pT 〉 =

∫ ∞

0

p2
T e−(

√
p2

T +m2
0−m0)/T dpT /

∫ ∞

0

pT e−(
√

p2
T +m2

0−m0)/T dpT (4.13)

The 〈pT 〉 results for different centralities in Au+Au collisions and in p+p collisions

calculated using Equation 4.13 are listed in Table 4.7 as values ± statistical uncer-

〈pT 〉 (GeV/c)
0-10% 1.080±0.025±0.117

10%-30% 1.117±0.056±0.121
30%-50% 1.080±0.046±0.117
50%-80% 1.031±0.037±0.112

p+p 0.679±0.028±0.028

Table 4.7: The K∗ 〈pT 〉 in different centralities of Au+Au collisions and in p+p
collisions.

tainties ± systematic uncertainties. The 〈pT 〉 in 0-10% centralities is from the top
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10% central triggered Au+Au collisions. The 〈pT 〉 in p+p collisions calculated in this

way is smaller than the 〈pT 〉 obtained from the power-law fit to the K∗ transverse

momentum spectrum.

Figure 4.15 shows the K∗ 〈pT 〉 as a function of number of charged hadrons in different

centralities in Au+Au collisions and in minimum bias p+p collisions. The data point

for K∗ 〈pT 〉 in p+p collisions is from the power-law fit to the K∗ pT spectrum. For

comparison, the 〈pT 〉 for p, K− and π− [64] are also shown in this figure.

From this figure, we observe a significant increase of the K∗ 〈pT 〉 from p+p collisions

to Au+Au collisions. This is consistent with our initial picture that high pT reso-

nances have a larger chance to be detected than low pT resonances so that a larger

〈pT 〉 value is expected in Au+Au collisions.

4.6 Nuclear Modification Factor

The nuclear modification factor RAA (Equation 1.5) or RCP (Equation 1.6) of the

K∗(892) meson is important in differentiating between mass and particle species or-

dering. Current STAR measurements of identified hadrons, such K0
S and Λ, show

that the RCP of Λ differs from that of K0
S [77]. It is important to determine whether

this difference is related to the particle masses or the type of particles (whether it is

a meson or a baryon) since there is a significant mass difference between K0
S and Λ.

However, the K∗ resonance is a meson with its mass close to the Λ baryon. Thus a

measurement of the K∗ nuclear modification factor, RAA or RCP , and the comparison

to that of the K0
S and Λ will give us information on this subject.

We have measured the K∗0 invariant yields for seven pT bins in top 10% central

Au+Au collisions. We also measured the K∗0 and K∗± invariant yields as a function

of pT in minimum bias p+p collisions and fit these with a power-law function. Since

the pT spectra in both Au+Au and p+p collisions have the same rapidity and pseudo-

rapidity ranges, we can just calculate the K∗ RAA by taking the ratio of the invariant

yields in Au+Au collision to those in p+p collisions for each pT bin, then scaling by

1/TAA. Although the pT spectra in Au+Au and p+p don’t have the same pT bins, we

can use the invariant yields calculated by the power-law fit function in p+p collisions
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Figure 4.16: The K∗ nuclear modification factor RAA as a function of pT compared
to K0

S and Λ RCP .
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for the pT value corresponding to each bin center in the Au+Au spectrum.

Figure 4.16 shows the K∗ nuclear modification factor RAA (top 10% central Au+Au

/ p+p) as a function of pT along with RCP (top 5% central Au+Au / 60%-80% pe-

ripheral Au+Au) of K0
S and Λ. In this figure, we can see that the values of K∗ RAA

at pT <∼1.6 GeV/c are significantly smaller than the RCP of both K0
S and Λ. This

is likely due to the loss of low pT K∗ signals in the hadron gas medium related to

the daughter particles’ re-scattering effect. At pT >∼ 1.6GeV/c, the K∗ RAA values

are close to the K0
S RCP and significantly different from the Λ RCP . This gives us

evidence that the nuclear modification factor RAA or RCP more likely depends on the

particle types rather than the particle masses.

4.7 Elliptic Flow

In non-central Au+Au collisions, the hot-dense medium in both momentum space and

coordinate space has an elliptic shape in the plane perpendicular to the beam axis.

In the early stages after the collision, the ellipse in momentum space is perpendicular

to that in coordinate space so that as the evolution of the fireball goes on, the ellipse

in coordinate space will become more circular. If the evolution time is long enough,

the ellipse in coordinate space might become elliptic again with the same orientation

as the elliptic shape in momentum space [10].

Although measurements of the hadron elliptic flow v2 in the STAR experiment [12]

gave us information on the elliptic shape of the fireball in momentum space, it is

difficult to determine the elliptic shape of the medium in coordinate space in the late

stages. Fortunately, the K∗ resonance provides a good signal which is sensitive to

the medium shape in coordinate space due to the K∗ daughter particles’ re-scattering

effect. If a K∗ resonance decays inside the hadron medium, its kaon and pion daughter

particles might be re-scattered by the particles inside the hadron gas. And this

re-scattering effect depends on the shape of the medium in coordinate space. K∗

resonances flying toward the long axis of the ellipse in coordinate space should have

a larger re-scattering effect since there are more particles along the long axis than

along the short axis of the elliptic shaped hadron medium. Thus a measurement of
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K∗ elliptic flow v2 and its comparison to the hadron v2 can give us information on the

medium shape in coordinate space at the late stages. If there exists an elliptic shaped

medium in coordinate space perpendicular to the ellipse in momentum space at the

late stages of the collisions, we expect to observe a larger K∗ v2 than the hadron v2.

On the other hand, if the ellipse in coordinate space is identical to that in momentum

space, we expect to observe a smaller K∗ v2.

Using the methods described in Section 3.9, we measured the K∗0 elliptic flow v2 as a

function of pT (shown in Figure 4.17) and as a function of collision centrality (shown

in Figure 4.18) and compared to the charged hadron elliptic flow v2. The data points

shown in both figures have statistical uncertainties only. Results shown in Figure

4.17 are obtained from all minimum bias triggered Au+Au collisions. Results shown

in Figure 4.17 are obtained from the entire K∗0 pT range from 0.4 to 3.2 GeV/c.

From the comparisons in both figures, due to limited statistics for the K∗ analysis,

we do not observe significant differences between the K∗ v2 and the charged hadron

v2 except in the most peripheral data point of K∗0 v2 in Figure 4.18. We expect

to acquire more statistics in the RHIC IV run in 2004 which might give us ∼40M

minimum bias triggered Au+Au collisions (an increase by a factor of 20) so that

we can precisely measure the K∗ elliptic flow v2 to determine the medium shape in

coordinate space.



95

 (GeV/c)Tp
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 (%
)

2v

0

5

10

15

20

25

30

35

2 v*0K

2Charged Hadron v

Figure 4.17: The K∗0 elliptic flow v2 as a function of pT in minimum bias triggered
Au+Au collisions compared to the charged hadron v2.
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Figure 4.18: The K∗0 elliptic flow v2 as a function of collision centrality compared to
the charged hadron v2.



Chapter 5

Systematic Uncertainties

In this analysis, the available data for p+p collisions allow us to precisely measure

the K∗0 mass and width as a function of transverse momentum. Thus we are able to

perform systematic uncertainty studies. We also measured the K∗0 mass and width

as a function of transverse momentum in top 10% central Au+Au collisions. Due

to limited statistics, we are unable to perform studies of systematic uncertainties on

the mass and width measurements. In the coming RHIC IV Au+Au run in 2004, we

expect to have enough statistics to precisely measure the K∗0 mass and width with

systematic uncertainty studies.

STAR also measured the K∗0 spectra in Au+Au collisions at
√

sNN=130 GeV during

the first RHIC run in 2000 [55]. With approximately 440,000 top 14% most central

Au+Au collision events, the systematic uncertainty for the K∗0 mid-rapidity yield

dN/dy and the inverse slope parameter T were estimated to be 25% and 10%, respec-

tively. In this analysis, we use about 2M top 10% central triggered Au+Au collision

events and about 6M minimum bias triggered p+p collision events at
√

sNN=200

GeV. The systematic uncertainties for the K∗0 dN/dy and T have been significantly

reduced and detailed studies are shown in this chapter.

96
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5.1 Systematic Uncertainties for K∗0 Mass in p+p

Collisions

By Using Equation 3.9 to fit the Kπ invariant mass spectrum after mixed-event

background subtraction in p+p collisions, the K∗0 natural mass and width parameters

in pT bins are extracted. A significant K∗0 mass shift at low pT is then observed, while

no obvious K∗0 width change is seen. In order to study the systematic uncertainties for

K∗0 mass in p+p collisions, we must consider the systematic effects from the particle

types (K∗0 vs. K∗0), the mixed-event background subtraction methods, different

functions representing the residual background, different sets of dynamical cuts, track

types (primary tracks vs. global tracks), detector effects.

5.1.1 Particle Types

In this analysis, we measure the K∗0 mass and width by adding K∗0 and K∗0 together

in order to increase the statistics. We have to study the systematic uncertainties

induced in doing this. Thus after we obtain K+π− and K−π+ pair invariant mass

spectra separately from same events and mixed events, we subtract the mixed-event

background for K∗0 and K∗0 respectively as shown in Equation 5.1 and 5.2

NK∗0(M) = NK+
1 π−1

−RK∗0 ×
6∑

i=2

(NK+
1 π−i

+ NK+
i π−1

) (5.1)

NK∗0(M) = NK−
1 π+

1
−RK∗0 ×

6∑
i=2

(NK−
1 π+

i
+ NK−

i π+
1
) (5.2)

Then we fit the background subtracted invariant mass spectra with the function in

Equation 3.9 to extract the mass and width in each pT bin for the K∗0 and K∗0,

respectively. The differences in each pT bin for extracted mass and width values

between the K∗0 + K∗0 and the K∗0 or K∗0 are listed in Table 5.1 and Table 5.2,

respectively.
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5.1.2 Background Subtraction Methods

As described in Section 3.4.1, once the same-event and mixed-event Kπ pair invariant

mass spectra are obtained, the mixed-event background is subtracted as

NK∗0(M) = Ns(M)−R×Nm(M) (5.3)

in which the subscripts s and m stand for the same-event spectrum and mixed-

event spectrum, respectively, and R is the normalization factor. This background

subtraction method is effective in reconstructing the K∗0 signals for each pT bin. Then

we fit the background subtracted spectrum with Equation 5.4 to extract the K∗0 mass

and width values. Nevertheless, since the mixed-event background cannot perfectly

represent the other Kπ pairs in the same-event spectrum, we have to check the

systematic uncertainties caused by this mixed-event background subtraction method.

f(M) = ag(M) + B(M) = ag(M) + bM + c (5.4)

in which we define g(M) as

g(M) =
1

a
F (M)× P (M) =

MΓM0

(M2 −M2
0 )2 + M2

0 Γ2
× M√

M2 + p2
T

e−
√

M2+p2
T

T (5.5)

In this analysis, we use two methods to study the systematic uncertainties induced

by the mixed-event background subtraction method.

In method (1), we obtain an invariant mass distribution n(M) by

n(M) = Ns(M)/Nm(M) (5.6)

Then we fit the invariant mass distribution n(M) with Equation 5.7 to extract the

K∗0 natural mass in each pT bin.

f1(M) = a[1 + bg(M)] (5.7)

In method (2), we fit the same-event spectrum Ns(M) with Equation 5.8 to extract

the K∗0 natural mass and in each pT bin.

f2(M) = ag(M) + bM2 + cM + d (5.8)
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The differences in pT bins for extracted mass and width values between the mixed-

event background subtraction method and method (1) or method (2) are listed in

Table 5.1 and Table 5.2, respectively. By using method (1) and method (2), K∗0

signals in some pT bins may not be reconstructed effectively. In these cases, the

differences in corresponding pT bins are listed as “N/A” in Table 5.1 and Table 5.2.

5.1.3 Residual Background Functions

By using the event-mixing technique, since the mixed-event invariant mass spectrum

cannot perfectly describe the other Kπ pairs in the same-event spectrum, there is

always a certain amount of residual background in the mixed-event background sub-

tracted invariant mass spectrum. In this analysis, we use a linear function as shown in

Equation 3.8 to represent the residual background. In order to study the systematic

uncertainties induced by this linear residual background function, we use both a sec-

ond order polynomial function and an exponential function to represent the residual

background as shown in Equations 5.9 and 5.10, respectively

B1(M) = bM2 + cM + d (5.9)

B2(M) = b× e−c(M−d) (5.10)

The differences in pT bins between the linear function method and the second poly-

nomial function method or the exponential function method for extracted mass and

width values are listed in Table 5.1 and Table 5.2, respectively.

5.1.4 Dynamical Cuts Effect

The systematic uncertainties on K∗0 mass induced by various dynamical cuts, such

as the tracks’ number of fit points cut, the ratio of number of fit points to number

of possible points cut, the track pseudo-rapidity cut, the track measured DCA cut,

the dE/dx cut, etc, are at the level of 0.1 MeV/c2. The largest amount of systematic

uncertainties induced by the dynamical cuts comes from the kaon and pion momentum

cuts.

As discussed in Section 3.3, in this analysis, we select kaon candidates’ momentum and
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transverse momentum in the range 0.2 < p(and pT ) < 0.7 GeV/c and pion candidates’

momentum and transverse momentum in the range 0.2 < p(and pT ) < 10.0 GeV/c

in order to reduce the amount of residual background and thus precisely measure

the K∗0 mass and width values as a function of pT in p+p collisions. We use two

different sets of track momentum cuts to check the systematic uncertainties due to

this reason: (1) kaon candidates: 0.2 < p(and pT ) < 10.0 GeV/c and pion candidates:

0.2 < p(and pT ) < 10.0 GeV/c; (2) kaon candidates: 0.2 < p(and pT ) < 0.7 GeV/c

and pion candidates: 0.2 < p(and pT ) < 0.7 GeV/c. By using the cut set (1), we will

have a larger amount of residual background. And by using the cut set (2), we will

lose some of the statistics. The K∗0 signals with pT > 0.8 GeV/c cannot be effectively

reconstructed in both cases so that we can only study the systematic uncertainties

for K∗0 mass and width values with pT < 0.8 GeV/c. Results are listed in Table 5.1

and Table 5.2.

5.1.5 Track Types

In the event reconstruction stage, we force a global track with DCA<3.0 cm to pass

through the collision vertex and re-fit this track to get a primary track. Thus the

momentum is slightly different between a primary track and its associated global

track. In this analysis, we use primary tracks as kaon and pion candidate tracks

and use global tracks to check the systematic uncertainties on K∗0 mass and width

values induced in using primary track momentum only. The differences in pT bins for

extracted mass and width values between using the primary track momentum and

using the global track momentum are listed in Table 5.1 and Table 5.2, respectively.

5.1.6 Detector Effects

Once a collision event happens and charged tracks go through the STAR TPC de-

tector, the gas in the TPC will be ionized and the TPC will be full of charged ions.

If the charged ions cannot completely disappear before next collision event happens,

these charges would be deposited inside the TPC by each collision event. These de-

posited charges in the TPC are called space charges. The space charges will change
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the electric field inside the TPC and thus affect the measurement of track momentum.

Studies [78] have shown that this space charge effect will change the magnitude of

the momentum of the positive/negative charged tracks by plus/minus 2% per GeV/c.

The space charge effect will also change the opening angle of each oppositely charged

pair by 4 mrad.

According to independent studies using the RICH detector [79], the charged tracks’

transverse momentum measured by the TPC should be corrected by

∆pT = 0.007× p2
T (5.11)

All the above detector effects will affect the observed K∗0 natural mass and width

values, since we use charged track momentum measured by the TPC detector to

reconstruct the K∗0 signals. Using Monte Carlo simulations, we find that these space

charge effects will change the K∗0 mass by about ±3.0 MeV/c2 and change the K∗0

width by ±2.0 MeV/c2 in each pT bin.

In a summary, the systematic uncertainties in pT bins in minimum bias triggered

p+p collisions for K∗0 mass and width values are listed in Table 5.1 and Table 5.2,

respectively. The total systematic uncertainties are calculated as shown in Equation

5.12 and 5.13 for each pT bin

∆M(pT ) =

√∑
i

∆Mi(pT ) (5.12)

∆Γ(pT ) =

√∑
i

∆Γi(pT ) (5.13)
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pT (GeV/c) 0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 1.0-1.2 1.2-1.4 1.4-1.6
K∗0 only -2.6 -1.7 +1.2 -1.7 +0.7 -1.4 +0.4 +0.1

K∗0 only +3.1 +1.7 -1.5 +1.9 -0.7 +3.2 +0.3 +0.1
Method (1) N/A N/A -3.7 -0.5 -0.1 -1.8 -2.6 -2.2
Method (2) -2.4 -0.2 -0.5 -0.8 -1.0 N/A N/A N/A

Backgrnd 6.9 +0.2 +0.1 -0.2 -0.1 +0.2 +0.1 -0.2 -0.2
Backgrnd 6.10 -0.1 +0.1 +0.1 +0.2 -0.1 -0.1 +0.1 +0.2
Cut Set (1) +0.2 -0.2 -0.1 +2.4 N/A N/A N/A N/A
Cut Set (2) +0.9 +1.2 -1.3 -3.4 N/A N/A N/A N/A

Global Track -2.7 -4.6 -3.5 -2.7 -1.0 -1.4 +2.6 +0.2
Detector Eff ∼ ±3.0
Total Sys Err ±5.4 ±5.8 ±6.2 ±5.6 ±3.4 ±4.4 ±4.0 ±3.7

Table 5.1: Systematic uncertainties in pT bins for the K∗0 natural mass in minimum
bias triggered p+p collisions. Units for extracted mass differences are MeV/c2.

pT (GeV/c) 0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 1.0-1.2 1.2-1.4 1.4-1.6
K∗0 only +7 -2 +2 -2 +9 +5 +10 +1

K∗0 only -11 +2 -3 +3 -9 +5 -7 +1
Method (1) N/A N/A -3 +5 -5 +2 +12 +7
Method (2) -22 -6 +5 +4 -3 N/A N/A N/A

Backgrnd 6.9 +2 -1 +2 -1 -1 +2 -2 +2
Backgrnd 6.10 -1 +1 -2 -2 +2 -1 +2 +1
Cut Set (1) +2 -2 -1 +2 N/A N/A N/A N/A
Cut Set (2) +1 +2 -3 -4 N/A N/A N/A N/A

Global Track +2 -2 +5 +7 -2 -2 +9 +8
Detector Eff ∼ ±2.0
Total Sys Err ±25 ±7 ±8 ±10 ±11 ±8 ±19 ±11

Table 5.2: Systematic uncertainties in pT bins for the K∗0 width in minimum bias
triggered p+p collisions. Units for extracted width differences are MeV/c2.
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5.2 Systematic Uncertainties for Yield and Inverse

Slope

In order to study the systematic uncertainties on the K∗0 mid-rapidity yield dN/dy

and the inverse slope parameter T , we need to consider the systematic effects from

the fit functions for the K∗0 signal, residual background functions, particle types,

all kinds of dynamical cut effects and detector effects. We use the top 10% central

triggered Au+Au collision events to study the systematic uncertainties for different

centralities in Au+Au collisions.

5.2.1 Fit Functions

To extract the yield of the K∗ in a certain transverse momentum range, we use a

simplified Breit-Wigner function shown in Equation 3.10 for the K∗ signal and fix

the natural mass and width parameters as the values obtained from Section 3.10.

Thus we have to study the systematic effects on the K∗ yields induced in doing this

way. Our studies show that by using Equation 3.9 with open natural mass and width

parameters in the fit function, the K∗0 yield is changed by -2.49% and -0.63% in top

10% central triggered Au+Au collisions and minimum bias triggered p+p collisions,

respectively.

5.2.2 Residual Background Functions

In this analysis, we use a linear function as shown in Equation 3.8 to represent

the residual background in the mixed-event background subtracted invariant mass

spectrum. Thus in order to study the systematic effects on the K∗0 yields induced

by this linear background method, we use both a second order polynomial function

(Equation 5.9) and an exponential function (Equation 5.10) to represent the residual

background.

Our studies show that using the second order polynomial function to represent the

residual background changes the K∗0 yield by -8.30% and +3.43% in top 10% central

Au+Au collisions and p+p collisions, respectively. Using the exponential function to
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represent the residual background changes the K∗0 yield by +12.05% and +2.05% in

top 10% central Au+Au and p+p collisions, respectively.

5.2.3 Particle Types

When calculating the K∗0 mid-rapidity yield dN/dy and the inverse slope parameter

T , we add the K∗0 and K∗0 together to increase the statistics. Thus we study the

systematic uncertainties of this by reconstructing the K∗0 and K∗0 separately. Results

on the systematic uncertainties induced by different particle types are listed in Table

5.3.

5.2.4 Dynamical Cut Effects

The systematic uncertainties in the K∗0 mid-rapidity yield, dN/dy, and inverse slope

parameter induced by various dynamical cuts mostly come from the tracks’ number

of fit points cut. Thus we cut on the tracks’ number of fit points greater than 20 to

study the systematic uncertainties. Results are listed in Table 5.3.

5.2.5 Detector Effects

The Au+Au and p+p collision data used in this analysis were taken with a magnetic

field of +0.5 Tesla (defined as full field) and -0.5 Tesla (defined as reversed full field)

inside the TPC separately. Different magnetic fields result in different systematic

effects in the measurement of K∗0 dN/dy and T . Thus by analyzing data taken with

full field and reversed full field, systematic uncertainties on the K∗0 dN/dy and T are

listed in Table 5.3.

The STAR TPC detector consists of two identical parts located at the east side and

west side along the beam direction and separated by a center foil. The charged tracks

measured by the east/west side of the TPC are defined to have negative/positive

pseudo-rapidity η values. By reconstructing K∗0 signal by using tracks with nega-

tive/positive pseudo-rapidity, we have results on the systematic uncertainties for the

K∗0 dN/dy and T due to this east-west side difference of the TPC detector which are
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listed in Table 5.3.

In order to achieve roughly uniform acceptance over the pseudo-rapidity range, we

require the collision vertex in both Au+Au and p+p collision events to be within

± 50 cm along the beam direction. Then we select events with |VertZ| < 25 cm in

top 10% central triggered Au+Au collisions and |VertZ| < 75 cm in minimum bias

triggered p+p collisions, respectively, to study the systematic uncertainties induced

by this collision vertex cut. Results are listed in Table 5.3.

In a summary, the systematic uncertaities on the K∗0 mid-rapidity yield dN/dy and

the inverse slope parameter T in Au+Au and p+p collisions are listed in Table 5.3

as percentages.

dN/dy in p+p T in p+p dN/dy in Au+Au T in Au+Au
Fit Functions -0.63% 0 -2.49% 0
Backgrnd 6.9 +3.43% 0 -8.30% 0
Backgrnd 6.10 +2.05% 0 +12.05% 0

K∗0 only +5.46% -2.04% +1.77% -1.10%

K∗0 only -5.17% +1.59% -1.12% +2.81%
Full Field -1.74% -3.45% +1.73% +0.87%

Rev. Full Field +0.77% +1.00% -1.40% +1.33%
West TPC -0.53% -0.68% -0.86% +1.99%
East TPC -0.34% -0.45% +8.97% +0.07%

NFitPnts Cut -0.15% +0.50% +4.38% +0.12%
VertZ Cut +0.22% +0.77% -0.90% +2.20%

Total Sys Err ±6.5% ±4.09% ±15.53% ±10.86%

Table 5.3: Systematic uncertainties in percentages for the mid-rapidity yield dN/dy
and the inverse slope parameter T in minimum bias triggered p+p collisions and top
10% central triggered Au+Au collisions.



Chapter 6

Discussion

6.1 In-Medium Effects and Mass Modification

In Figure 6.1, a downward K∗0 mass shift up to ∼10 MeV/c2 is observed in both

p+p and top 10% central Au+Au collisions and this downward mass shift is pT de-

pendent. In the STAR experiment, we have also observed a downward ρ0 mass shift
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Figure 6.1: K∗0 mass as a function of transverse momentum in p+p and top 10%
central Au+Au collisions. The solid straight line stands for the standard K∗0 mass
(896.1 MeV/c2). The dot-dashed (dashed) curve represents the MC results for K∗0

mass in p+p (top 10% central Au+Au) collisions after considering detector effects
and kinematic cuts. The grey shadows represent systematic uncertainties in p+p.
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Figure 6.2: The ρ0 mass as a function of pT for minimum bias p+p (filled circles), high
multiplicity p+p (open triangles), and peripheral Au+Au (filled squares) collisions.
The dashed lines represent the average of the ρ0 mass measured in e+e−. The shaded
areas indicate the ρ0 mass measured in p+p collisions. Figure is taken from [66].

up to ∼50 MeV/c2 in both minimum bias triggered p+p collisions and peripheral

Au+Au collisions shown in Figure 6.2 [66]. The pT dependence of the ρ0 mass has

similar behavior to the K∗0 mass. The ∆++ mass as function of number of charged

hadrons in Au+Au and p+p collisions has also be measured and a downward mass

shift up to ∼20 MeV/c2 has been observed [67]. No significant change of the K∗0, ρ0

or ∆++ width has been observed.

All the above measurements for K∗0, ρ0 and ∆++ mass shifts suggest that the proper-

ties of the resonances in the hot-dense medium have been modified by an in-medium

effect. The K∗0 lifetime is 4 fm/c, the ρ0 lifetime is about 1.2 fm/c and the ∆++

lifetime is about 1.5 fm/c. All these three resonance species may decay inside the

hadron medium before the accumulated in-medium effects might be released. Thus

the reconstructed K∗0, ρ0 and ∆++ can give us information on their properties inside

the medium with high temperature and high densities. The K∗0 natural width is 50.7

MeV/c2, the ρ0 natural width is 150 MeV/c2 and the ∆++ natural width is about

120 MeV/c2. Thus these resonances themselves provide relatively large space for the

in-medium effect to modify their masses.

In the case of the φ and Λ∗(1520) resonances, their lifetimes are about 40 fm/c for
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φ and 13 fm/c for Λ∗(1520). They may also undergo an in-medium effect and their

properties might be changed when they are inside the hadronic medium. However,

their relatively larger lifetimes, compared to the K∗0, ρ0 and ∆++ resonances, might

allow them to decay after the kinetic freeze-out when all the in-medium effects have

disappeared. From the measurements in the STAR experiment, we do not observe a

significant mass shift for the φ meson [65] and the mass shift (< 3 MeV/c2) for the

Λ∗(1520) [23] is also negligible considering the relatively large statistical uncertainties

in Au+Au and p+p collisions.

Resonances with large pT may have more chances to escape the medium earlier than

the kinetic freeze-out stage and thus when they decay outside the fireball, their ac-

cumulated in-medium effect might have disappeared. Thus the high pT resonances

properties might be less likely to be modified by the in-medium effect. This may

explain the observed K∗0 and ρ0 mass pT dependence.
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6.2 Re-Scattering and Re-Generation Effects and

Evolution Properties

From Figure 6.4, we can see that the K∗/K ratios in Au+Au collisions are signifi-

cantly smaller than the ratio in p+p collisions. This suppression in Au+Au collisions

is expected from the K∗ daughter particles’ re-scattering effect in the hadron medium

which destroys part of the primordial K∗ yield. As discussed in Section 1.2.5, the

UrQMD transport model calculations [28] also predict that the high pT K∗ resonances

are more likely to be reconstructed than the low pT K∗. Thus larger inverse slope

parameters in Au+Au collisions are also expected. Our measurements of the K∗0

transverse mass spectra and the inverse slope parameters in Au+Au and p+p col-

lisions have confirmed this UrQMD model prediction. As shown in Table 4.4, the

inverse slope parameters measured in Au+Au collisions are significantly larger than

that in p+p collisions. Figure 4.14 shows that the K∗ 〈pT 〉 in Au+Au collisions

are significantly larger than that in p+p collisions which also demonstrates the same

UrQMD prediction.
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Different resonances decay into different hadronic daughters and different hadronic
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daughters may have different interaction cross sections with the pions which are the

predominant hadrons in the medium. Thus the relative yields of the resonances de-

stroyed by the daughter particles’ re-scattering effect should be different for different

resonances. On the other hand, the amount of resonance signals re-produced by the

re-generation effect in the hadron medium should also be different due to the same

reason. Considering the above discussions, the differences between the observed reso-

nances yields and their corresponding primordial yields might be different for different

resonances, such as K∗0, ρ0, φ, ∆++, etc.

Figure 6.5: The total cross section of π+π− scattering as a function of c.m. energy√
s. Figure is taken from [37].

Figure 6.5 shows the π+π− interaction cross sections as a function of collision en-

ergy and Figure 6.6 shows the π−K+ interaction cross sections from UrQMD cal-

culations [37]. From these two figures, we can see that the total cross section for

pion-pion interactions is about a factor of 5 larger than the total cross section for

pion-kaon interactions. The K∗0 decays to a kaon and a pion. As long as at least one

of its daughters is re-scattered by the hadrons in the medium, we will lose this K∗0

signal. Thus the re-scattering effect should be mostly determined by the pion-pion
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Figure 6.6: The total cross section of π−K+ scattering as a function of c.m. energy√
s. Figure is taken from [37].

interaction section since the dominant species inside the medium is pions and the

kaon-pion re-scattering is negligible compared to the pion-pion interactions. On the

other hand, the cross section for kaon-pion interaction to re-produce the K∗0 signals

is relatively small so that the re-generation cannot compensate the loss of the K∗0

signals due to the daughter particles’ re-scattering effect. Thus we observe a K∗/K

suppression in Au+Au collision compared to p+p collisions.

In the case of ρ0 → π+π−, the cross section for the daughter pions re-scattered by the

medium pions is the same as the cross section for two medium pions scatter with each

other to produce the ρ0 signals. Thus we do not expect to observe any significant ρ0/π

ratio difference between Au+Au and p+p collisions. In Figure 6.4, the ρ/π ratios in

p+p and Au+Au demonstrate our prediction.

In the case of the φ resonance, it has a relatively larger lifetime (∼40 fm/c) compared

to K∗0, ρ and ∆++. It has much larger chances to decay after the kinetic freeze-out

and thus avoid the re-scattering effect. The cross section for K+K− interaction to

re-create φs is also relatively smaller. Thus in the case of the φ resonance, both the

re-scattering and the re-generation effects are weak so that the φ/K ratio in Au+Au

collisions is not expected to be much different from the ratio in p+p collisions.
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Figure 6.7 shows the π+p interaction cross sections as a function of collision energy.

The total cross section for proton-pion interactions is about 1.3 times of the total

cross section for pion-pion interactions. Thus we would expect to see that the ∆++

signals re-produced by the re-generation effect might exceed the signals destroyed by

the re-scattering effect. In Figure 6.4, we can see that the ∆++/p ratios in Au+Au

collisions are slightly larger than the ratio in p+p collisions. Considering the data

uncertainties, no significant suppression for the ∆++/p ratio suppression in Au+Au

can be observed compared to the ratio in p+p collisions.

Figure 6.7: The total cross section of π+p scattering as a function of laboratory
momentum plab. Figure is taken from [37].

6.3 Time Scale Estimation between Freeze-Outs

In Figure 4.12 and 4.13, we can see that the K∗/K ratios in Au+Au collisions are sig-

nificantly smaller than the ratio in p+p collisions. Statistical model calculations [80]

also predict that the K∗/K ratio in central Au+Au collisions is about 0.37 which is

also significantly larger than the ratios we have measured in Au+Au collisions. This

is due to the fact that the K∗ decay daughter particles’ re-scattering effect in the

hadron gas medium destroys a portion of the K∗ signals in Au+Au collisions. Thus
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we can use the K∗/K ratio difference between Au+Au collisions and p+p collisions

(or the statistical model predictions in Au+Au) to estimate the time between the

chemical freeze-out stage and the kinetic freeze-out stage.

First, we define tC as the time at the chemical freeze-out stage when the abundances

of the mesons and baryons emerging from a pre-hadronic state are expected to be

fixed by hadronization temperature and chemical fugacities. We also define tK as the

time at the kinetic freeze-out stage when all hadrons stop interacting. Thus in order

to calculate the time ∆t = tK − tC , we have make the following assumptions: (1) we

assume that all the thermally produced K∗ signals appear at the chemical freeze-out

stage tC ; (2) we lose all the K∗ signals which decay inside the hadron gas medium due

to the daughter particles’ re-scattering effect; (3) we ignore the re-generation effect.

Thus the time difference between the chemical freeze-out and the kinetic freeze-out

can be calculated as
K∗

K
|tK =

K∗

K
|tCe−∆t/τ (6.1)

In the above equation, τ is the K∗ lifetime which is 4 fm/c. We use the measured

K∗/K ratio in the top 10% central Au+Au collisions which is 0.2046 ± 0.0333 as the

ratio at tK and use the measured K∗/K ratio in p+p collisions which is 0.3889 ±
0.0286 as the ratio at tC . Thus we can get the time between the chemical freeze-out

and the kinetic freeze-out ∆t = 3 ± 1 fm/c.

Now let’s go back to check our assumptions. Not all the thermally produced K∗

signals can appear exactly at tC . Part of them may appear even earlier. This fact

may imply a smaller ∆t value for the time scale between the chemical and kinetic

freeze-outs. But the time allowed for the K∗ thermal production before the chemical

freeze-out might be very short [28]. Thus the necessary correction to the calculated

∆t value is expected to be small. Second, we cannot guarantee that all the K∗ signals

decay inside the fireball will be destroyed. Some high pT K∗ resonances may escape

the fireball and decay before the kinetic freeze-out stage. In this case, we still can

detect these high pT K∗ signals. This effect imply a larger ∆t for the time difference

between the chemical and kinetic freeze-outs. Third, the kaon and pion particles in-

side the hadron gas medium may interact with each other to re-produce part of the

K∗ signals due to the re-generation effect. This would make the time ∆t larger than
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calculated. Due to the discussions above, our value of ∆t should be considered as a

rough estimation and probably a lower limit on the time between the chemical and

kinetic freeze-outs.

On the other hand, due to the relatively large interaction cross sections between the

K∗ decay pion daughter and the pion particles in the hadron gas medium, very few

K∗ signals which decay inside the medium can be detected. Second, the total amount

of high pT K∗ resonance which can escape the fireball should be much smaller than

the amount of the low pT K∗ resonances which mainly determine the total K∗ total

yield (due to the exponentially decreasing behavior in the K∗ transverse mass spectra

in Au+Au collisions). Third, the interaction cross sections between the medium kaon

and pion particles are about a factor of 5 smaller than the pion-pion interaction cross

sections. Thus the re-generation effect cannot compensate much of the lost K∗ reso-

nance due to the daughter particles’ re-scattering effect. From these discussions, we

can qualitatively conclude that the real time difference between the two freeze-outs

is not expected to be much larger than our calculated ∆t.

As discussed in Section 1.2.5, the UrQMD transport model [28] considers the fla-

vor and chemistry changing processes predominantly before the chemical freeze-out

stage and the elastic and pseudo-elastic processes between the chemical and kinetic

freeze-outs. In Figure 1.1, we can see that at t ∼ 6 fm/c, the elastic processes exceed

the flavor and chemistry changing inelastic processes so that the system reaches the

chemical freeze-out point. At t ∼ 11 fm/c, the elastic interaction rate starts to expo-

nentially decrease so that the system reaches the kinetic freeze-out stage. Thus from

the UrQMD calculations, we can see that the time scale between the chemical and

kinetic freeze-outs is about 5 fm/c in Pb+Pb at 160A GeV which is consistent with

our measurement that the time scale is not much larger than 3 ± 1 fm/c.

G. Torrieri and J. Rafelski [33] have theoretically studied the strange hadron res-

onances as a signature of freeze-out dynamics. They started with the thermally

produced resonances at the chemical stage and then considered the re-scattering ef-

fect for the resonance decay products in the hadron fireball. Finally they performed a

quantitative analysis on how the suppression of the observability of the resonances can
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constrain both the chemical freeze-out temperature and the lifetime of the hadron in-

teraction phase evolving between the chemical and the kinetic freeze-out conditions.

Figure 6.8 shows the thermally produced (dashed line) and the observable (solid

lines) K∗0/K ratio as a function of the chemical freeze-out temperature T for differ-

ent time intervals between the chemical and kinetic freeze-outs. For Au+Au collisions

at
√

sNN , we reasonably select the temperature at chemical freeze-out to be T = 160

MeV [6, 80]. Thus according to our measured K∗/K ratio at the top 10% central

Au+Au collisions, we can read from the figure that the time scale between two freeze-

outs is between 4 and 6 fm/c which is also consistent with our calculations.

G. Torrieri and J. Rafelski [33] also used the combined K∗0/K and Λ(1520)/Λ ra-

tios to constrain both the chemical freeze-out temperature and the interacting phase

lifetime as shown in Figure 6.9. Since at RHIC, the Λ(1520) resonance can also be

reconstructed [23], we expect to soon be able to use both the K∗/K and Λ(1520)/Λ
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ratios to determine the chemical freeze-out temperature and the time scale between

freeze-outs at the same time according to G. Torrieri and J. Rafelski’s calculations.

In conclusion, through the measurement of the K∗/K ratios in both Au+Au and

p+p collisions, we estimate that the time scale between the chemical and kinetic

freeze-outs is not much larger than 3 ± 1 fm/c. And this result is consistent with the

UrQMD transport model calculations for the Pb+Pb at 160 A GeV and the theoret-

ical calculations by G. Torrieri and J. Rafelski. We also expect to use soon both the

K∗/K and Λ(1520)/Λ ratios to determine the chemical freeze-out temperature and

the time scale between freeze-outs at the same time. As discussed in Section 1.2.4,

we might also be able to measure the ρ di-leptonic decay to constrain the upper limit

for the time scale between the freeze-outs.



Chapter 7

Conclusion

By using about 2M top 10% central triggered and 2M minimum bias triggered Au+Au

collision events and 6M minimum bias triggered p+p collision events at
√

sNN=200

GeV taken during the second RHIC run in 2001 and 2002, the K∗0 and K∗± vector

meson resonance production has been measured via their hadronic decay channels:

K∗0 → Kπ and K∗± → K0
Sπ±.

The K∗0 mass and width as a function of pT have been measured in central Au+Au

and p+p collisions. The K∗0 transverse mass spectra have been studied in central

Au+Au, four centrality bins in minimum bias Au+Au and p+p collisions and the

K∗0 mid-rapidity yield, dN/dy, and the inverse slope parameter, T , have been ex-

tracted through an exponential fit to the transverse mass spectra. The K∗0 and K∗±

transverse momentum spectrum has been observed to fit with a power-law function

in the range pT > 0.5 GeV/c.

The particle ratios, K∗0/K and φ/K∗0, and the K∗0 mean transverse momentum,

〈pT 〉, have been studied in central Au+Au, different centrality bins in minimum bias

Au+Au and p+p collisions. The K∗0 nuclear modification factor, RAA, has been

measured as a function of pT by comparing the K∗ yields in top 10% central Au+Au

and p+p collisions. The K∗0 elliptic flow v2 has been measured as a function of pT

and as a function of collision centrality in minimum bias Au+Au collisions.

117
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7.1 Production Properties

A significant K∗0 mass downward shift has been observed at low pT in both central

Au+Au and p+p collisions and this mass shift decreases as a function of pT . The

K∗ mass shift in Au+Au collisions together with the measurements of the ρ0 and

∆++ masses agree with the theoretical predictions that resonances with extremely

short lifetimes in a hot and dense medium can interact with the surrounding hadrons

and the properties of the resonances would be modified by this resonance in-medium

effect.

The K∗/K ratios in Au+Au collisions have been observed to be significantly smaller

than the ratio in p+p collisions. This K∗/K ratio difference gives us information

that between the chemical and kinetic freeze-out stages in Au+Au collisions, the

K∗ decayed daughter particles scatter with the hadrons in the medium and this

re-scattering effect has destroyed a portion of the primordial K∗ yields. This K∗

daughter particles’ re-scattering effect is pT dependent. K∗ resonances with larger

pT have a greater chance to escape the medium and thus avoid the re-scattering

effect. Our observation that the K∗0 mean pT in Au+Au collisions is significantly

larger than the mean pT in p+p collisions agrees with the pT dependence of the K∗

daughter particles’ re-scattering effect.

Considering the total cross section between π− π interactions is in magnitude larger

than the cross section between K − π interactions, the number of K∗ signals re-

produced by the re-generation effect is much smaller than the K∗ yields destroyed

by the daughter particles’ re-scattering effect. Thus by comparing the K∗/K ratio

in central Au+Au and p+p collisions, the time between the chemical and kinetic

freeze-outs has been estimated to have a lower limit, 3 ± 1 fm/c. This is consistent

with Rafelski’s theoretical calculation and the UrQMD model prediction.

The K∗ nuclear modification factor RAA with pT >∼ 1.6 GeV/c is observed to be

close to the RCP of K0
S and significantly different from the Λ RCP . This indicates that

the nuclear modification factor might be particle type (meson vs. baryon) dependent

rather than particle mass dependent.

With the currently available statistics, there is no significant difference between the
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observed K∗0 v2 and the observed charged hadron v2.

7.2 Future Directions

In the 2004 RHIC Au+Au run, we expect to have a factor of 20 more statistics than

the second RHIC run. This will enable us to precisely measure the K∗ mass and

width as a function of pT in Au+Au collisions. We also expect to greatly reduce the

statistical uncertainties of the K∗ mid-rapidity yields, dN/dy, and the inverse slope

parameters, T . The future available statistics can also enable us to more precisely

measure the K∗ elliptic flow v2 as a function of pT and as a function of collision

centrality.

With the full coverage TOFr being installed in the STAR detector hopefully in 2006,

the pion and kaon particle identification can be extended with momentum up to

around 1.6 GeV/c. This should greatly reduce the residual background in the Kπ

invariant mass spectrum.

With the measurement of Λ(1520) production in Au+Au collisions, together with

the K∗ measurement, it may enable us to estimate both the medium temperature

and the time scale between chemical and kinetic freeze-outs. The full coverage TOFr

can also effectively identify the electrons and positrons. This might provide us great

chances to reconstruct the ρ0 resonance signal via the di-lepton channel. This future

measurement may give us an estimation of the upper limit of the time scale.



Appendix A

Kinematic Variables

The transverse momentum of a particle is defined by using the momentum azimuthal

components px and py

pT =
√

p2
x + p2

y (A.1)

Then the transverse mass for a particle with mass m0 is defined as

mT =
√

m2
0 + p2

T (A.2)

Thus

mT dmT =

√
m2

0 + p2
T

2
√

m2
0 + p2

T

dp2
T = pT dpT (A.3)

The energy of a particle is

E =
√

m2
0 + p2

x + p2
y + p2

z =
√

m2
T + p2

z (A.4)

Thus the rapidity variable y is defined as

y =
1

2
ln

E + pz

E − pz

(A.5)

Then

E = mT coshy (A.6)

pz = mT sinhy (A.7)

If θ is the angle between the particle momentum and the beam axis, then the pseudo-

rapidity η is defined as

η = −ln[tan(θ/2)] (A.8)
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Appendix B

Branching Ratio

Here we discuss how to use the isospin quantum numbers to calculate the decay

branching ratio for the K∗(892) resonance by assuming 100% of the K∗ meson decays

in the Kπ channel.

As we know, the isospin z-component (Iz) of a u quark is 1
2

and the Iz of a d quark

is −1
2
. Thus the isospin state of a proton can be written as |I, Iz〉 = |1

2
, 1

2
〉 and the

isospin state of a neutron can be written as |I, Iz〉 = |1
2
,−1

2
〉.

In the case of K∗0(ds), the isospin state is |I, Iz〉 = |1
2
,−1

2
〉. It can decay in two

channels

K∗0(ds) → K0(ds) + π0((uu− dd)/
√

2) (B.1)

K∗0(ds) → K+(us) + π−(du) (B.2)

The isospin states for the decayed daughters are: K0: |I1, I1z〉 = |1
2
,−1

2
〉 and π0:

|I2, I2z〉 = |1, 0〉; or K+: |I1, I1z〉 = |1
2
, 1

2
〉 and π−: |I2, I2z〉 = |1,−1〉.

Since both the decay channels have two daughters with I1 = 1
2

and I2 = 1, the K∗0

decay can be expressed as |I1, I2; I, Iz〉 = |1
2
, 1; 1

2
,−1

2
〉. The right side of the decay

shown in B.1 can be written as |I1, I2; I1z, I2z〉 = |1
2
, 1;−1

2
, 0〉. The right side of the

decay shown in B.2 can be written as |I1, I2; I1z, I2z〉 = |1
2
, 1; 1

2
,−1〉. Then by reading

the Clebsch-Gordan Coefficients, we can have

|1
2
, 1;

1

2
,−1

2
〉 =

1√
3
|1
2
, 1;−1

2
, 0〉 − 2√

3
|1
2
, 1;

1

2
,−1〉 (B.3)
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Thus we know that the decay branching ratio for B.1 is 1/3 and the decay branching

ratio for B.2 is 2/3.

In the case of K∗+, it has two decay channels

K∗+(us) → K+(us) + π0((uu− dd)/
√

2) (B.4)

K∗+(us) → K0(ds) + π+(ud) (B.5)

Thus the K∗+ decay |I1, I2; I, Iz〉 = |1
2
, 1; 1

2
, 1

2
〉. The right side of the decay shown in

B.4 can be written as |I1, I2; I1z, I2z〉 = |1
2
, 1; 1

2
, 0〉. The right side of the decay shown

in B.5 can be written as |I1, I2; I1z, I2z〉 = |1
2
, 1;−1

2
, 1〉. Then we have

|1
2
, 1;

1

2
,
1

2
〉 = − 1√

3
|1
2
, 1;

1

2
, 0〉+

2√
3
|1
2
, 1;−1

2
, 1〉 (B.6)

Thus we know that the decay branching ratio for B.4 is 1/3 and the decay branching

ratio for B.5 is 2/3.
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